大模型的表征学习方法简介

表征学习是大模型应用中非常重要的一个方向,其实在深度学习中已经有众多的深入研究。表征学习本质上就是一个空间映射,把文本、图像、声音等不同模态的数据映射到一个高维空间,表示为向量,进而作为模型的输入。比如,针对文本中的词、图像中的不同颜色、纹理或者卷积等,以及视频、声音等流式数据中的不同切片或者使用滤波器等处理后的各种特征进行学习,这样所有模态就可以向量化,进而feed到一个模型进行训练学习了。

一般地,在大模型的训练过程中,都会加入对不同模态的表征学习,这样可以针对不同训练任务、不同模态进行向量化。概括地,相关的表征学习方法主要包括以下几种:

  1. 基于自监督学习的表征学习:
    ○ 自监督学习(Self-Supervised Learning, SSL)是一种强大的表征学习方法,它通过设计辅助学习目标来利用未标记的数据。例如,在推荐系统中,对比学习作为一种SSL技术,通过对比数据增强来提高推荐性能。
  2. 图神经网络增强的协同过滤:
    ○ 在推荐系统中,图神经网络(Graph Neural Networks, GNNs)被用于捕捉用户和物品之间的高阶协同关系。这些基于图的方法,如NGCF、GCCF和LightGCN,通过使用历史用户-物品交互来创建二分图,并利用GNNs来捕捉高阶协同关系,从而提高推荐效果。
  3. 大型语言模型在推荐系统中的应用:
    ○ 大型语言模型(Large Language Models, LLMs)也被用于推荐系统,通过设计提示(prompts)使其与推荐任务对齐。例如,P5将用户交互数据转换为文本提示,用于语言模型训练。
  4. 基于对比预测编码的表征学习:
    ○ 对比预测编码(Contrastive Predictive Coding, CPC)是一种表征学习方法,通过学习输入数据的表示,使得模型能够预测未来的数据点。
  5. 基于互信息最大化的表征学习:
    ○ 互信息最大化是一种用于无监督表征学习的技术,通过最大化不同视图或不同部分数据之间的互信息来学习数据的表示。
  6. 基于图的自监督学习:
    ○ 图自监督学习通过在图结构数据上设计自监督任务来学习节点或图的表示,例如通过预测节点的邻居或图的属性来学习节点表示。
  7. 基于提示学习的表征学习:
    ○ 提示学习(Prompt Learning)是一种利用大型预训练语言模型的表征学习方法,通过设计特定的提示来引导模型完成特定任务,从而提高模型在特定任务上的表现。
  8. 基于掩码的图像表征学习:
    ○ 例如,MAE(Masked Autoencoders)是一种基于图像掩码的表征学习方法,通过随机掩码输入图像的部分像素并重构原始图像来学习图像的特征表示。
  9. 统一框架MAGE:
    ○ MAGE(Masked Generative Encoder)是一个统一的图像生成和特征提取模型,它使用基于transformer的encoder-decoder结构对掩码图像进行重构,同时进行生成模型和表征学习的训练。

通过这些表征学习方法从不同维度(有无监督、自监督、基于图与掩码等)进行学习,大模型从而能够学习到更丰富、更鲁棒的特征表示,提高模型的性能和泛化能力。此外,在应用于不同的任务和领域,如图像识别、推荐系统、自然语言处理等实际问题时,还需要进行各种领域数据下的调优来提高效果。

### 跨模态联合表征学习模型介绍 跨模态联合表征学习旨在通过构建统一的特征空间来表示来自不同模态的数据,使得这些数据能够在该共享空间中有效地进行比较和关联。这一领域近年来取得了显著进展,特别是随着深度学习的发展,多种高效的多模态表征学习模型被提出。 #### ALBEF模型概述 ALBEF(Align before Fuse)是一种新型的高效多模态表征学习架构[^1]。此模型专注于解决图像与文本之间的语义鸿沟问题,在保持原有信息的基础上实现两者间的精准匹配。具体来说: - **图文对齐机制**:采用对比损失函数优化策略,确保图片及其对应描述在同一潜在空间内尽可能接近; - **动量蒸馏技术**:引入教师网络指导学生网络的学习过程,从而加速收敛并提高泛化能力; - **下游任务表现优异**:不仅限于简单的相似度计算,还能够处理复杂的交互式查询任务如视觉问答(VQA)以及自然语言视觉推理(NLVR²),展现出强大的实际应用潜力。 ```python import torch from transformers import BertTokenizer, VisualBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = VisualBertModel.from_pretrained("uclanlp/visualbert-vqa-coco-pre") inputs = tokenizer("A picture of a dog", return_tensors="pt") image_features = ... # 图像特征向量输入 outputs = model(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, visual_embeds=image_features) last_hidden_states = outputs.last_hidden_state ``` --- ### 应用场景探讨 基于上述特性,跨模态联合表征学习模型广泛应用于多个重要领域: - **多媒体搜索引擎增强**:通过对海量异构媒体资源建立索引结构,支持用户快速定位所需资料; - **智能客服系统升级**:借助高质量的人机对话理解模块,提升服务效率和服务质量; - **个性化推荐引擎改进**:依据用户的浏览历史和个人偏好定制专属内容推送方案; - **辅助医疗诊断工具开发**:结合医学影像识别技术和病历文档解析功能,帮助医生做出更加准确及时的判断决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值