以下内容全部摘自维基百科或教科书。
为了后续查阅方便,故此记录。
1. 集合
1.1 σ代数
某个集合 X 上的σ-代数又叫 σ-域,是 X 的幂集的子集合(X 的幂集即包含所有 X 的子集的集合系)。这个子集满足对于补集运算和可数个并集运算的封闭性(因此对于可数个交集运算也是封闭的)。σ-代数在测度论里可以用来定义所谓的“可测集合”,是测度论的基础概念之一。
简单来说,σ-代数就是定义在X上的,一种特殊的集合的集合。
2. 拓扑学
2.1 拓扑
定义:
X
X
X是一个集合,
X
X
X上的拓扑(topography)
T
T
T是
X
X
X的子集族,且满足以下条件:
2.2 拓扑空间
定义:
指定了拓扑
T
T
T的集合
X
X
X被称为拓扑空间(topology space)。
可见,拓扑空间就是集合 X X X本身,如果 X X X被指定了一个拓扑。
集合 X X X及定义在 X X X上的拓扑 T T T是拓扑空间的两个要素,因此在正式场合用 ( X , T ) (X,T) (X,T)代表拓扑空间。
2.3 开集 & 闭集
开集系 & 开集
定义
设拓扑空间
(
X
,
T
)
(X,T)
(X,T)有子集
O
O
O,若
O
∈
T
O \in T
O∈T,则
O
O
O称为开子集(open set)。
下面是维基百科的内容,实际上是一个意思,不过还是上面的知乎回答清楚一些。
X的子集的集合族D被称为开集系(其中的元素称为开集),当且仅当其满足如下开集公理:
- 空集和X都属于D
- 对任意并运算封闭
- 对有限交运算封闭
从开集出发定义其它各概念:
闭集:
X和开集做差。
邻域:
开集O属于U,点x只有在开集O中才能把U作为邻域。
开核:
U中的开集之并为开核。可见只有点x属于U的开核,U才是x的邻域。
闭集系 & 闭集
前面是从开集系出发的,其实也可以从闭集系、邻域等概念出发定义其他概念。
X的子集的集合族S被称为开集系(其中的元素称为开集),当且仅当其满足如下开集公理:
- 空集和X都属于D
- 对任意交运算封闭
- 对有限并运算封闭
从闭集出发定义其它各概念:
2.5 拓扑空间的紧致性
覆盖
定义:设X是一个集合,他的一族子集
A
=
{
A
λ
∣
λ
∈
Λ
}
A = \left\{ {{A_\lambda }|\lambda \in \Lambda } \right\}
A={Aλ∣λ∈Λ}如果满足
⋃ λ ∈ Λ A λ = X \bigcup\limits_{\lambda \in \Lambda } {{A_\lambda }} {\rm{ = }}X λ∈Λ⋃Aλ=X
则称A为X的一个覆盖。
开覆盖
定义:特别的,如果X是一个拓扑空间,且每个
A
λ
{A_\lambda }
Aλ都是X中的开集,则A为X的一个开覆盖。
拓扑空间的紧致性
拓扑空间 X 被定义为紧致的,如果它的所有开覆盖都有至少一个有限的子覆盖:
意思就是,对于拓扑空间X的任意一个开覆盖C,C的子集也能实现覆盖。
局域紧致性
待补充。
2.4 豪斯多夫空间
假设X是拓扑空间。设x和y是X中的点。
邻域概念回顾
X是一个集合,比如说是点集。X中的子集包含了X中不同的点。拓扑T就是就是这些子集的集合,满足一些既定条件。T中的元素,也就是X中的一些子集,被称为开集。x是X中的点,假设它在某个开集O之中。U是X的一个子集。如果O包含于U之中,那么U就是点x的邻域。
由邻域分离
如果存在 x 的邻域 U 和 y 的邻域 V 使得 U 和 V 是不相交的
(
U
∩
V
=
∅
)
(U ∩ V = \emptyset )
(U∩V=∅),则称 x 和 y 可以由邻域分离。
豪斯多夫空间
如果X中的任意两个不同的点都可以由这样的邻域分离,那么称 X 是豪斯多夫空间。这也是豪斯多夫空间叫做“T2空间”或“分离空间”的原因。
3. 哈尔测度
3.1 波莱尔集 & 测量
波莱尔代数 & 波莱尔集
对于一个局域紧致豪斯多夫拓扑群(G,・) ,其所有的紧子集生成的σ-代数被称为波莱尔代数(Borel algebra),波莱尔代数的元素即为波莱尔集。
波莱尔集上的变换
对于群G的元素g和子集S,可以定义S的左变换和右变换:
左/右变换使波莱尔集映射为波莱尔集。
变换不变的
对于一个作用于G的波莱尔子集上的测量μ,如果对所有的波莱尔子集S和所有的g有
μ ( g S ) = μ ( S ) \mu \left( {gS} \right) = \mu \left( S \right) μ(gS)=μ(S)
则称这个测度 μ \mu μ是左变换不变的。相应可以定义右变换不变性。
3.2 哈尔测度
左哈尔测度
在差一个正因子常数的情形下,如果G的波莱尔子集上的一个唯一可加的非平凡测度μ满足如下性质:
那么这个G上的测度μ便被称为左哈尔测度。
右哈尔测度
同样可以证明存在一个唯一(相差一个正因子的意义下)的右变换不变的波莱尔测度ν满足上面的正则条件且在紧致集合上有限,但并不要求它与左变换不变的哈尔测度μ相同。
3.3 哈尔积分(Haar integral)
由勒贝格积分理论,可以定义G上所有波莱尔测度方程
f
f
f的积分。这个积分便是哈尔积分(Haar integral)。 如果μ是一个左哈尔测度,那么对任意一个方程f,都有
4. 群函数
有了这些前置知识,就可以理解论文中的群函数了。
待补充。