[数学笔记]拓扑、哈尔测度、群函数(1)(待补充)

以下内容全部摘自维基百科或教科书。
为了后续查阅方便,故此记录。

1. 集合

1.1 σ代数

某个集合 X 上的σ-代数又叫 σ-域,是 X 的幂集的子集合(X 的幂集即包含所有 X 的子集的集合系)。这个子集满足对于补集运算和可数个并集运算的封闭性(因此对于可数个交集运算也是封闭的)。σ-代数在测度论里可以用来定义所谓的“可测集合”,是测度论的基础概念之一。

在这里插入图片描述
简单来说,σ-代数就是定义在X上的,一种特殊的集合的集合。

2. 拓扑学

2.1 拓扑

定义:
X X X是一个集合, X X X上的拓扑(topography) T T T X X X的子集族,且满足以下条件:
在这里插入图片描述

2.2 拓扑空间

定义:
指定了拓扑 T T T的集合 X X X被称为拓扑空间(topology space)。

可见,拓扑空间就是集合 X X X本身,如果 X X X被指定了一个拓扑。

集合 X X X及定义在 X X X上的拓扑 T T T是拓扑空间的两个要素,因此在正式场合用 ( X , T ) (X,T) (X,T)代表拓扑空间。

2.3 开集 & 闭集

开集系 & 开集

定义
设拓扑空间 ( X , T ) (X,T) (X,T)有子集 O O O,若 O ∈ T O \in T OT,则 O O O称为开子集(open set)。

在这里插入图片描述
下面是维基百科的内容,实际上是一个意思,不过还是上面的知乎回答清楚一些。

X的子集的集合族D被称为开集系(其中的元素称为开集),当且仅当其满足如下开集公理:

  1. 空集和X都属于D
    在这里插入图片描述
  2. 对任意并运算封闭
    在这里插入图片描述
  3. 对有限交运算封闭
    在这里插入图片描述

从开集出发定义其它各概念
在这里插入图片描述
闭集:
X和开集做差。

邻域:
开集O属于U,点x只有在开集O中才能把U作为邻域。

开核:
U中的开集之并为开核。可见只有点x属于U的开核,U才是x的邻域。

闭集系 & 闭集

前面是从开集系出发的,其实也可以从闭集系、邻域等概念出发定义其他概念。

X的子集的集合族S被称为开集系(其中的元素称为开集),当且仅当其满足如下开集公理:

  1. 空集和X都属于D
    在这里插入图片描述
  2. 对任意交运算封闭
    在这里插入图片描述
  3. 对有限并运算封闭

在这里插入图片描述
从闭集出发定义其它各概念

在这里插入图片描述

2.5 拓扑空间的紧致性

覆盖
定义:设X是一个集合,他的一族子集 A = { A λ ∣ λ ∈ Λ } A = \left\{ {{A_\lambda }|\lambda \in \Lambda } \right\} A={AλλΛ}如果满足

⋃ λ ∈ Λ A λ = X \bigcup\limits_{\lambda \in \Lambda } {{A_\lambda }} {\rm{ = }}X λΛAλ=X

则称A为X的一个覆盖

开覆盖
定义:特别的,如果X是一个拓扑空间,且每个 A λ {A_\lambda } Aλ都是X中的开集,则A为X的一个开覆盖

拓扑空间的紧致性
拓扑空间 X 被定义为紧致的,如果它的所有开覆盖都有至少一个有限的子覆盖:
在这里插入图片描述
意思就是,对于拓扑空间X的任意一个开覆盖C,C的子集也能实现覆盖。

局域紧致性
待补充。

2.4 豪斯多夫空间

假设X是拓扑空间。设x和y是X中的点。

邻域概念回顾
X是一个集合,比如说是点集。X中的子集包含了X中不同的点。拓扑T就是就是这些子集的集合,满足一些既定条件。T中的元素,也就是X中的一些子集,被称为开集。x是X中的点,假设它在某个开集O之中。U是X的一个子集。如果O包含于U之中,那么U就是点x的邻域

由邻域分离
如果存在 x 的邻域 U 和 y 的邻域 V 使得 U 和 V 是不相交的 ( U ∩ V = ∅ ) (U ∩ V = \emptyset ) (UV=),则称 x 和 y 可以由邻域分离

豪斯多夫空间
如果X中的任意两个不同的点都可以由这样的邻域分离,那么称 X 是豪斯多夫空间。这也是豪斯多夫空间叫做“T2空间”或“分离空间”的原因。

3. 哈尔测度

3.1 波莱尔集 & 测量

波莱尔代数 & 波莱尔集
对于一个局域紧致豪斯多夫拓扑群(G,・) ,其所有的紧子集生成的σ-代数被称为波莱尔代数(Borel algebra),波莱尔代数的元素即为波莱尔集

波莱尔集上的变换
对于群G的元素g和子集S,可以定义S的左变换和右变换:
在这里插入图片描述
左/右变换使波莱尔集映射为波莱尔集。

变换不变的
对于一个作用于G的波莱尔子集上的测量μ,如果对所有的波莱尔子集S和所有的g有

μ ( g S ) = μ ( S ) \mu \left( {gS} \right) = \mu \left( S \right) μ(gS)=μ(S)

则称这个测度 μ \mu μ是左变换不变的。相应可以定义右变换不变性。

3.2 哈尔测度

左哈尔测度

在差一个正因子常数的情形下,如果G的波莱尔子集上的一个唯一可加的非平凡测度μ满足如下性质:
在这里插入图片描述
那么这个G上的测度μ便被称为左哈尔测度。

右哈尔测度

同样可以证明存在一个唯一(相差一个正因子的意义下)的右变换不变的波莱尔测度ν满足上面的正则条件且在紧致集合上有限,但并不要求它与左变换不变的哈尔测度μ相同。
在这里插入图片描述

3.3 哈尔积分(Haar integral)

由勒贝格积分理论,可以定义G上所有波莱尔测度方程 f f f的积分。这个积分便是哈尔积分(Haar integral)。 如果μ是一个左哈尔测度,那么对任意一个方程f,都有
在这里插入图片描述

4. 群函数

有了这些前置知识,就可以理解论文中的群函数了。

待补充。

5. 参考链接

维基百科:拓扑空间
知乎:拓扑空间
维基百科:豪斯多夫空间
百度文库:拓扑空间的紧性
维基百科:哈尔测度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值