代数拓扑笔记(1) —— 胞腔复形

这个系列的笔记讲讲代数拓扑。
 
 

1.1 胞腔复形

胞腔复形可能是我现在学到的代数拓扑中最重要的研究对象,因为从胞腔复形可以构造出很多常见的图形,这些图形在有了胞腔复形结构之后,我们可以有更多的方法去研究他们,比如 Van Kampen 定理去计算基本群,或者通过特殊的胞腔复形去计算单纯同调群。

首先得定义两个拓扑空间的拓扑和:

Definition 1.1.1 拓扑和 任给两个拓扑空间 ( X 1 , τ 1 ) , ( X 2 , τ 2 ) (X_1,\tau_1),(X_2,\tau_2) (X1,τ1),(X2,τ2),他们的无交并 X 1 ⊔ X 2 X_1\sqcup X_2 X1X2 上可以定义拓扑 τ = { U ⊂ X 1 ⊔ X 2 ∣ U ∩ X i ∈ τ i , i = 1 , 2 } \tau=\{U\subset X_1\sqcup X_2|U\cap X_i\in\tau_i,i=1,2\} τ={UX1X2UXiτi,i=1,2},称 ( X 1 ⊔ X 2 , τ ) (X_1\sqcup X_2,\tau) (X1X2,τ) 为原先两个拓扑空间的拓扑和。

以前我们学过从两个拓扑空间构造新拓扑空间的乘积拓扑,事实上如果取投影映射 j i ( U ) = U ∩ X i j_i(U)=U\cap X_i ji(U)=UXi,两个拓扑空间的拓扑和与乘积拓扑是等价的,这就是看事物的两个不同的方面。

Definition 1.1.2 胞腔复形 归纳的定义胞腔复形 X X X,其 n n n 维骨架记作 X n X^n Xn
(1) X 0 X^0 X0 是具有离散拓扑的集合,其元素称为 0 0 0维胞腔;
(2) 从 X n − 1 X^{n-1} Xn1 构造 X n X^n Xn:将任意多个 n n n 维胞腔粘合到 X n − 1 X^{n-1} Xn1 上,其过程为,将 n n n 维圆盘 D n D^n Dn 通过粘合映射 φ : ∂ D n → X n − 1 \varphi: \partial D^n\rightarrow X^{n-1} φ:DnXn1 粘到 X n − 1 X^{n-1} Xn1 上,从而 X n X^n Xn 是拓扑和 X n − 1 ⊔ D n X^{n-1}\sqcup D^n Xn1Dn 的商空间,其等价关系 ∼ \sim ∀ x ∈ ∂ D n , x ∼ φ ( x ) \forall x\in\partial D^n,x\sim\varphi(x) xDn,xφ(x)
(3) 每个胞腔的闭包,只与有限多个胞腔相交;
(4) 在 X = ⋃ n X n X=\bigcup_n X^n X=nXn 上定义弱拓扑(这里 n n n 可以为正无穷): X X X 的子集 A A A 为开集(闭集)当且仅当 ∀ n , A ∩ X n \forall n,A\cap X^n n,AXn X n X^n Xn 的开集(闭集)。

注:
∙ \bullet (3)(4)要求闭包有限 (Closure finite) 与弱拓扑 (Weak topology) 是对有无穷多个胞腔时的要求,在有限个胞腔的情况时,我们指的拓扑就是商拓扑,此时胞腔复形的商拓扑就满足弱拓扑的定义,弱拓扑的条件是多余的,没必要复杂化。这也是胞腔复形为什么被称为CW复形的原因;

∙ \bullet 定义一个复合映射: Φ : D n ↪ X n \Phi:D^n\hookrightarrow X^n Φ:DnXn,这个映射做的事情就是把圆盘 D n D^n Dn 的边界粘合到原本的 X n − 1 X^{n-1} Xn1 上,因此我们所说的 n n n 维胞腔 指的是 e n = Φ ( Int  D n ) e^n=\Phi(\text{Int }D^n) en=Φ(Int Dn),也就是将圆盘粘合上去之后,原本圆盘的内部对应的部分,所以胞腔可以同胚的视作 n n n 维欧氏空间里的开圆盘, 0 0 0 维胞腔就是单点,映射 Φ \Phi Φ 称为这个胞腔的特征映射,其只要求存在,不要求唯一;

∙ \bullet 在 (2) 中列举的只是粘合上一个 n n n 维胞腔的情况,我也可以粘合无穷多个胞腔,但要注意的是他们都是粘合到 n − 1 n-1 n1 维骨架 X n − 1 X^{n-1} Xn1,也就是说要“同时”粘合上胞腔,不能在 n n n 维胞腔上再粘 n n n 维胞腔;

∙ \bullet 闭集 A A A 称为 X X X子复形,如果 A A A X X X 中若干胞腔的并;

∙ \bullet 胞腔复形的结构,一般可记为:
X 0 ⊂ X 1 ⊂ ⋯ ⊂ X i ⊂ ⋯ ⊂ X = ⋃ n X n . X^0\subset X^1\subset\dots\subset X^i\subset\dots\subset X=\bigcup_n X^n. X0X1XiX=nXn.

∙ \bullet 对有限个胞腔构成的,称为有限维胞腔复形,其欧拉示性数为 χ ( X ) = ∑ n ( − 1 ) n #  { e n } . \chi(X)=\sum_n (-1)^n\text{\# }\{e^n\}. χ(X)=n(1)n{en}.

 
 

Property 1.1.3 陈述一些胞腔复形 X X X 的性质:
(1) X X X 是 Hausdorff 的;
(2) A ⊂ X A\subset X AX 是闭的    ⟺    \iff ∀ α , Φ α − 1 ( A ) ⊂ D n \forall \alpha,\Phi_\alpha^{-1}(A)\subset D^n α,Φα1(A)Dn 是闭的。因此由商映射的定义知, X X X ⊔ n , α D α n \sqcup_{n,\alpha} D^n_\alpha n,αDαn 的商空间,并且我要看一个集合是开集还是闭集,只需要考虑他与每个胞腔的交集在该胞腔中是开还是闭;
(3) 闭集 A ⊂ X A\subset X AX 紧致    ⟺    \iff A A A 包含于 X X X 的有限胞腔子复形。特别的 X X X 紧致当且仅当 X X X 是有限胞腔复形;
(4) X X X 有可缩邻域基 ⇒ \Rightarrow X X X 局部道路连通 ⇒ \Rightarrow X X X 道路连通等价于 X X X 连通。
 

由 (4) 我们自然有了一个不是胞腔复形的例子, X = { ( 0 , y ) ∣ y ∈ [ − 1 , 1 ] } ∪ { ( x , sin ⁡ 1 x ) ∣ x ∈ ( 0 , 1 ) } X=\{(0,y)|y\in[-1,1]\}\cup\{(x,\sin\frac{1}x)|x\in(0,1)\} X={(0,y)y[1,1]}{(x,sinx1)x(0,1)} 因为他连通,但不道路连通。
从以上性质可以看到 X X X 是 Hausdorff 的,且他由欧氏空间中的开圆盘粘成,所以胞腔复形应该有和拓扑流形相似的性质,事实上:

∙ \bullet 每个紧致拓扑流形都同伦等价于一个胞腔复形,但反之胞腔复形不必须是流形;
∙ \bullet 对任意拓扑空间 Y Y Y,都存在胞腔复形 X X X,二者弱同伦等价,且 X X X 在同伦等价的意义下是唯一的。

并且上述命题也说明了胞腔复形可以构造出的空间是相当大的,作为未来相当长时间的研究对象应该是够用了,以上结论都可以在蛤车的 Chapter 0 或者附录或者姜伯驹《同调论》胞腔同调一章中找到。
 
 

1.2 胞腔复形的例子

胞腔就很像是拓扑里的积木, 0 0 0 维胞腔是单点, 1 1 1 维胞腔是去掉端点的线段, 2 2 2 维胞腔是开圆盘, 3 3 3 维胞腔是开球,以此类推。

Example 1.2.1 一维胞腔复形

这里特别的举个例子说明在无穷多个胞腔的时候,弱拓扑和一般的欧式拓扑的子空间是有区别的。我们从欧氏空间的子空间和胞腔复形两个角度去考虑如下几何上相同的图形:

首先在欧式空间中,上图由圆周 C n = { ( x , y ) ∈ R 2 ∣ ( x − 1 n ) 2 + y 2 = 1 n 2 } C_n=\{(x,y)\in\mathbb{R}^2|(x-\frac{1}n)^2+y^2=\frac{1}{n^2}\} Cn={(x,y)R2(xn1)2+y2=n21} 并起来得到,记作
H = ⋃ n = 1 ∞ C n , \mathbb{H}=\bigcup^{\infty}_{n=1}C_n, H=n=1Cn,

此时可以取到一列 { y n ∣ ∀ n , y n ∈ C n } \{y_n|\forall n,y_n\in C_n\} {ynn,ynCn} 逼近于 O O O,使得原点 O O O { y n } \{y_n\} {yn} 的聚点 。

再考虑胞腔复形结构 X X X,也就是原点 O O O 0 0 0 维胞腔 X 0 X^0 X0,其上粘帖了可数无穷多个 一维胞腔 X 1 X^1 X1,在每一个一维胞腔上取一点,得到点列 { x n } \{x_n\} {xn},此时我们的拓扑是弱拓扑,用上述的性质 (2), { x n } \{x_n\} {xn} 限制在零维胞腔上是空集,限制在每一个一维胞腔上是单点,因此 { x n } \{x_n\} {xn} 本身就是 X X X 中的闭集,因此原点 O O O 不是任何点列的聚点,由此我们知道这两个拓扑是不同的。

上述的相切圆周 H \mathbb{H} H 称为夏威夷耳环 (Hawaiian Earring),并且它有同胚等价的表述 X = [ 0 , 1 ] , A = { 1 n ∣ n = 1 , 2 , …   } X=[0,1],A=\{\frac{1}n|n=1,2,\dots\} X=[0,1],A={n1n=1,2,},则 H ≅ X / A \mathbb{H}\cong X/A HX/A,这个空间的一维同调群并非阿贝尔自由群,而是所谓的 torsion free,具体参见下文:
The Singular Homology of the Hawaiian Earring.

 

Example 1.2.2 二维胞腔复形
以圆环 T 2 T^2 T2 为例,我们知道它的多边形表示:

对边同方向粘合,右边矩形的四个顶点粘成同一个点,在左图中就是两个相交的圆周,其余的曲面部分,对应右图中剖去边界中心的开正方形,所以 T 2 T^2 T2 有胞腔复形结构,一个 e 0 e^0 e0,两个 e 1 e^1 e1,一个 e 2 e^2 e2 粘合得到,这里 e 2 e^2 e2 是按照多边形表示来粘合到一维胞腔上,比如已经有了一维骨架 X 1 X^1 X1,将 e 2 e^2 e2 从左图左下角打点处逆时针按照 a b a − 1 b − 1 aba^{-1}b^{-1} aba1b1 的顺序粘合到 X 1 X^1 X1 上,就得到了左图。

类似的对于多个亏格的二维可定向闭曲面,我们都可以把他分成单独圆环粘合在一起,由此得到多边形表示:

比方说下图亏格为 3 3 3 的可定向闭曲面,我们可以从右图看到其胞腔结构,一个 e 0 e^0 e0,六个 e 1 e^1 e1,一个 e 2 e^2 e2,所以他的欧拉示性数 χ ( X ) = 2 − 6 = − 4 \chi(X)=2-6=-4 χ(X)=26=4,类似的我们知道,亏格为 g g g 的可定向闭曲面,其欧拉示性数为 2 − 2 g 2-2g 22g.
对于亏格为 g g g 的不可定向曲面 Y Y Y,他由莫比乌斯带拼成,将莫比乌斯带的多边形表示沿对角线剪开,可知其等价于一个三角形的两边同方向(比如逆时针)粘合,因此我们可以写出 Y Y Y 的多边形表示。一个莫比乌斯带有一个亏格和一条边,因此 Y Y Y 由一个 e 0 e^0 e0 g g g e 1 e^1 e1,一个 e 2 e^2 e2构成,所以 χ ( Y ) = 2 − g \chi(Y)=2-g χ(Y)=2g.

 

Example 1.2.3 n \textbf{n} n 维胞腔复形

n n n 维球面 S n S^n Sn 的胞腔复形结构是 e 0 ∪ e n e^0\cup e^n e0en

n n n 维实射影空间: R P n = { R n + 1  中过原点的直线  } , = R n + 1 − { O } / ∼ ,  这里 ∼  为  ∀ v ∈ R n + 1 − { O } , λ ∈ R − { 0 } , v ∼ λ v , = S n / ∼ ,  这里  ∼  为  ∀ v ∈ S n , v ∼ − v , = D n / ∼ ,  这里  D n  是  S n  的含边上半球面 , ∼  为  ∀ v ∈ ∂ D n , v ∼ − v , = e n ∪ ( S n − 1 / ∼ ) , ∪  是由圆盘边界的粘合映射得到的  , ∼ 为粘合对径点 , … = e n ∪ e n − 1 ∪ ⋯ ∪ e 0 ; \begin{aligned}\mathbb{R}P^n&=\{\mathbb{R}^{n+1}\text{ 中过原点的直线 }\},\\ &=\mathbb{R}^{n+1}-\{O\}/\sim,\quad \text{ 这里} \sim \text{ 为 } \forall v\in\mathbb{R}^{n+1}-\{O\}, \lambda\in\mathbb{R}-\{0\},v\sim\lambda v,\\ &=S^n/\sim, \quad \text{ 这里 }\sim \text{ 为 }\forall v\in S^n,v\sim -v,\\ &=D^n/\sim, \quad \text{ 这里 }D^n \text{ 是 }S^n \text{ 的含边上半球面},\sim \text{ 为 }\forall v\in\partial D^n,v\sim -v,\\ &=e^n\cup(S^{n-1}/\sim),\quad\cup\text{ 是由圆盘边界的粘合映射得到的 },\sim \text{为粘合对径点},\\ &\dots\\ &=e^n\cup e^{n-1}\cup\dots\cup e^0;\end{aligned} RPn={Rn+1 中过原点的直线 },=Rn+1{O}/ 这里  vRn+1{O},λR{0},vλv,=Sn/, 这里   vSn,vv,=Dn/, 这里 Dn  Sn 的含边上半球面,  vDn,vv,=en(Sn1/), 是由圆盘边界的粘合映射得到的 ,为粘合对径点,=enen1e0;

类似的 n n n 维复射影空间 C P n \mathbb{C}P^n CPn 有胞腔复形结构: e 2 n ∪ e 2 n − 1 ∪ ⋯ ∪ e 2 ∪ e 0 e^{2n}\cup e^{2n-1}\cup\dots\cup e^2\cup e^0 e2ne2n1e2e0,Van Kampen 定理告诉我们对于胞腔复形只用考虑其二维骨架的基本群,因此 π 1 ( C P n ) ≅ π 1 ( S 2 ) = 0. \pi_1(\mathbb{C}P^n)\cong\pi_1(S^2)=0. π1(CPn)π1(S2)=0. R P n \mathbb{R}P^n RPn 则由覆叠空间知其基本群为 π 1 ( R P n ) = Z 2 \pi_1(\mathbb{R}P^n)=\mathbb{Z}_2 π1(RPn)=Z2.
 
 

参考:

[1] 厦门大学刘文飞老师讲义.
[2] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[3] 尤承业,《基础拓扑学讲义》,北京大学出版社,1997.
[4] 姜伯驹,《同调论》,北京大学出版社,2006.

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
代数拓扑与同调论 Algebraic Topology ........................................................................................... Allen Hatcher Title Page Table of Contents Preface Standard Notations 同调论 .......................................................................................................................................... 姜伯驹 同调论讲义 ............................................................................................................................... 段海豹 Homological Algebra ................................................... HENRI CARTAN & S.EILENBERG Title Page Preface Contents List of Symbols 代数拓扑讲义 .......................................................................................... 根据Munkers 的书整理 代数拓扑的现代方法...................................................................................... HENRI CARTAN Conceptual Mathematics - A First Introduction to Categories ............................................................................................ F.William Lawvere Stephen H.Schanuel Basic Category Theory ............................................................................. Jaap van Oosten 范畴论 .............................................................................................................................................. 贺伟 谱序列 ...................................................................................................................................... 维基百科 Spectral sequence ...................................................................................................... Wikipedia Floer homology ............................................................................................................ Wikipedia Spectral Sequences in Algebraic Topology ................................ Allen Hatcher
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值