这个系列的笔记讲讲代数拓扑。
1.1 胞腔复形
胞腔复形可能是我现在学到的代数拓扑中最重要的研究对象,因为从胞腔复形可以构造出很多常见的图形,这些图形在有了胞腔复形结构之后,我们可以有更多的方法去研究他们,比如 Van Kampen 定理去计算基本群,或者通过特殊的胞腔复形去计算单纯同调群。
首先得定义两个拓扑空间的拓扑和:
Definition 1.1.1 拓扑和 任给两个拓扑空间 ( X 1 , τ 1 ) , ( X 2 , τ 2 ) (X_1,\tau_1),(X_2,\tau_2) (X1,τ1),(X2,τ2),他们的无交并 X 1 ⊔ X 2 X_1\sqcup X_2 X1⊔X2 上可以定义拓扑 τ = { U ⊂ X 1 ⊔ X 2 ∣ U ∩ X i ∈ τ i , i = 1 , 2 } \tau=\{U\subset X_1\sqcup X_2|U\cap X_i\in\tau_i,i=1,2\} τ={ U⊂X1⊔X2∣U∩Xi∈τi,i=1,2},称 ( X 1 ⊔ X 2 , τ ) (X_1\sqcup X_2,\tau) (X1⊔X2,τ) 为原先两个拓扑空间的拓扑和。
以前我们学过从两个拓扑空间构造新拓扑空间的乘积拓扑,事实上如果取投影映射 j i ( U ) = U ∩ X i j_i(U)=U\cap X_i ji(U)=U∩Xi,两个拓扑空间的拓扑和与乘积拓扑是等价的,这就是看事物的两个不同的方面。
Definition 1.1.2 胞腔复形 归纳的定义胞腔复形 X X X,其 n n n 维骨架记作 X n X^n Xn:
(1) X 0 X^0 X0 是具有离散拓扑的集合,其元素称为 0 0 0维胞腔;
(2) 从 X n − 1 X^{n-1} Xn−1 构造 X n X^n Xn:将任意多个 n n n 维胞腔粘合到 X n − 1 X^{n-1} Xn−1 上,其过程为,将 n n n 维圆盘 D n D^n Dn 通过粘合映射 φ : ∂ D n → X n − 1 \varphi: \partial D^n\rightarrow X^{n-1} φ:∂Dn→Xn−1 粘到 X n − 1 X^{n-1} Xn−1 上,从而 X n X^n Xn 是拓扑和 X n − 1 ⊔ D n X^{n-1}\sqcup D^n Xn−1⊔Dn 的商空间,其等价关系 ∼ \sim ∼ 为 ∀ x ∈ ∂ D n , x ∼ φ ( x ) \forall x\in\partial D^n,x\sim\varphi(x) ∀x∈∂Dn,x∼φ(x);
(3) 每个胞腔的闭包,只与有限多个胞腔相交;
(4) 在 X = ⋃ n X n X=\bigcup_n X^n X=⋃nXn 上定义弱拓扑(这里 n n