YB菜菜的机器学习自学之路(七)——简单了解keras框架

前提说明

一个一个编写前向传播和后向传播是十分麻烦的,一些打包好的机器学习框架可以帮助我们解决这些问题。这里简单了解keras框架,然后记录**课程《小白也能听懂的人工智能课》**中几个简单的应用例子。

1. 机器学习框架-keras

1.1 keras框架的特点

》Keras框架实现了机器学习神经网络底层复杂数学运算的封装,可以通过它提供的上层接口搭建模型。
除了Keras框架外,还有Tensorflow等框架。
》相比于Tensorflow框架,Keras更像是python,其主要特点是简单易用。但不如Tensorflow(更接近C语言)灵活和强大。

1.2 keras框架实现一个神经元的建立的过程

(1)导入keras框架

from keras.models import Sequential

(2)创建模型

model = Sequential()

(3)创建一个神经元

model.add(Dense(uints=, activation='', input_dim = ))

其中
Dense: 设置神经元层数,是一个全链接层
uiits: 设置当前层的神经元数量
activation:设置激活函数类型
input_dim:输入数据特征维度
在这里插入图片描述

(4)告诉keras使用什么样的代价函数和调整方法

model.compile(loss='',optimizer='',metrics=[''])

其中:
loss: 设置代价函数
optimizer : 设置优化器,包括学习率等
metrics: 设置评估标准

(5)开始训练

model.fit(x,y,epochs=,batch_size=)

其中
x:观测量中的自变量数据
y: 观测量中的因变量数据
epochs:设置训练回合数
batch_size: 批量数

2. 举例说明

2.1 一个神经元 和输入特征为1的案例

(1)数据源
在这里插入图片描述

(2)导入keras和层

from keras.models import Sequential
from keras.layers 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值