《A Paradigm Shift in Machine Translation: Boosting ranslation Performance of Large Language Models》,这篇文章是一个LLM微调用于机器翻译的案例,LLM经过微调后大幅提升在多语种的机器翻译性能。案例很有趣,也很有启发。
论文提出了一种基于LLM的机器翻译的新范式,性能好,并且降低了对翻译数据的监督数据的数据量需求,只需要基于单语数据进行无监督的继续预训练和少量翻译数据的有监督微调,就能达到甚至优于传统的编码器-解码器结构的机器翻译性能。
论文要解决的问题是,LLM在各种NLP任务中性能很好,但是对于翻译任务,只有 GPT-3.5 和 GPT-4 等非常大的模型才能与 NLLB 等最先进的编码器-解码器模型相媲美,并且在那些语料资源较少的小语种方面还是有不足。而其他 LLM 与传统翻译模型相比,这种差异变得更加明显,较小的 LLM 就差距更大。传统的机器翻译,基于Encode-decoder的Transform架构;基于Transform的Decoder架构实现机器翻译,能否表现更好呢?
文章提出了一种微调方法,Advanced Language Model-based trAnslator (ALMA)。这种方法提升翻译性能,又大幅减少了对于翻译语句对的监督数据的数据量要求。通过对比,选取LLaMA-2-7B和13B作为基座模型,进行两阶段的微调,具体步骤:
- 单语数据微调(Mon