【论文阅读】机器翻译新范式,《A Paradigm Shift in Machine Translation》

文章探讨了如何利用大型语言模型(LLM)进行机器翻译的优化,尤其是ALMA方法。通过单语和并行数据微调,LLM在无需大量监督数据的情况下,显著提升了翻译性能,特别是在资源有限的小语种上。研究还揭示了单语数据和并行数据质量对翻译效果的重要影响,以及LLM潜在的跨语言理解和意念通信潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Paradigm Shift in Machine Translation: Boosting ranslation Performance of Large Language Models》,这篇文章是一个LLM微调用于机器翻译的案例,LLM经过微调后大幅提升在多语种的机器翻译性能。案例很有趣,也很有启发。

论文提出了一种基于LLM的机器翻译的新范式,性能好,并且降低了对翻译数据的监督数据的数据量需求,只需要基于单语数据进行无监督的继续预训练和少量翻译数据的有监督微调,就能达到甚至优于传统的编码器-解码器结构的机器翻译性能。
在这里插入图片描述
论文要解决的问题是,LLM在各种NLP任务中性能很好,但是对于翻译任务,只有 GPT-3.5 和 GPT-4 等非常大的模型才能与 NLLB 等最先进的编码器-解码器模型相媲美,并且在那些语料资源较少的小语种方面还是有不足。而其他 LLM 与传统翻译模型相比,这种差异变得更加明显,较小的 LLM 就差距更大。传统的机器翻译,基于Encode-decoder的Transform架构;基于Transform的Decoder架构实现机器翻译,能否表现更好呢?

文章提出了一种微调方法,Advanced Language Model-based trAnslator (ALMA)。这种方法提升翻译性能,又大幅减少了对于翻译语句对的监督数据的数据量要求。通过对比,选取LLaMA-2-7B和13B作为基座模型,进行两阶段的微调,具体步骤:

  1. 单语数据微调(Mon
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bylander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值