深度学习模型降低GPU显存使用的方法

  1. 减小Batch_size
  2. 优化网络结构,或者改用深度可分离卷积代替常规卷积核,较小参数数量
  3. 选择更小的数据类型
    一般默认情况下, 整个网络中采用的是32位的浮点数,如果切换到 16位的浮点数,其显存占用量将接近呈倍数递减
  4. 做梯度累积,将loss划分为n,即loss = loss / n
    当执行完n步再进行梯度更新

https://blog.csdn.net/zhuiqiuk/article/details/90973240

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值