Pytorch有什么节省内存(显存)的小技巧?

点击上方,选择星标置顶,每天给你送干货

阅读大概需要9分钟

跟随小博主,每天进步一丢丢

编辑:忆臻

https://www.zhihu.com/question/341336919

本文仅作为学术分享,如果侵权,会删文处理

来自:机器学习算法与自然语言处理

Pytorch有什么节省内存(显存)的小技巧?

作者:Lyken
https://www.zhihu.com/question/274635237/answer/755102181


咦,大家都没看过陈天奇的 Training Deep Nets with Sublinear Memory Cost 吗?

训练 CNN 时,Memory 主要的开销来自于储存用于计算 backward 的 activation,一般的 workflow 是这样的

对于一个长度为 N 的 CNN,需要 O(N) 的内存。这篇论文给出了一个思路,每隔 sqrt(N) 个 node 存一个 activation,中需要的时候再算,这样显存就从 O(N) 降到了 O(sqrt(N))。

对于越深的模型,这个方法省的显存就越多,且速度不会明显变慢。

PyTorch 我实现了一版,有兴趣的同学可以来试试 https://github.com/Lyken17/pyto

作者:郑哲东
https://www.zhihu.com/question/274635237/answer/573633662


在不修改网络结构的情况下, 有如下操作:

  1. 同意

    Jiaming

    ,  尽可能使用inplace操作, 比如relu 可以使用 inplace=True 。

    一个简单的使用方法,如下:

def inplace_relu(m):
    classname = m.__class__.__name__
    if classname.find('ReLU') != -1:
        m.inplace=True
model.apply(inplace_relu)
2.进一步,比如ResNet 和 DenseNet 可以将 batchnorm 和relu打包成inplace,在bp时再重新计算。使用到了pytorch新的checkpoint特性,有以下两个代码。由于需要重新计算bn后的结果,所以会慢一些。
  • gpleiss/efficient_densenet_pytorch

  • mapillary/inplace_abn

3. 每次循环结束时 删除 loss,可以节约很少显存,但聊胜于无。可见如下issue

Tensor to Variable and memory freeing best practices

4. 使用float16精度混合计算。我用过

NVIDIA英伟达

apex,很好用,可以节约将近50%的显存,但是要小心一些不安全的操作如 mean和sum,溢出fp16。

NVIDIA/apex

补充:最近我也尝试在我CVPR19的GAN模型中加入fp16的训练,可以从15G的显存需求降到约10G,这样大多数1080Ti等较为常见的显卡就可以训练了。欢迎大家star一波 https://github.com/NVlabs/DG-Net

5. 对于不需要bp的forward,如validation 请使用 torch.no_grad ,  注意model.eval() 不等于 torch.no_grad() 请看如下讨论。

'model.eval()' vs 'with torch.no_grad()'

6. torch.cuda.empty_cache() 这是del的进阶版,使用nvidia-smi 会发现显存有明显的变化。但是训练时最大的显存占用似乎没变。大家可以试试。

How can we release GPU memory cache?

另外,会影响精度的骚操作还有:

把一个batchsize=64分为两个32的batch,两次forward以后,backward一次。但会影响 batchnorm等和batchsize相关的层。

作者:GaryLIU
https://www.zhihu.com/question/274635237/answer/574193034


一般呢,神经网络显存的占用可以简单分为这三部分

  1. 网络模型自身参数占用的显存。

  2. 模型计算时(包括forward/backward/optimizer)所产生的中间变量或参数也有占用显存。

  3. 编程框架自身一些额外的开销。

依据个人一些小经验,改变网络结构和不改变其结构的节省显存的方法有:

  • 减小Batch-size(这哪门子算trick,哈哈,- -!)

  • 出自https://oldpan.me/archives/how-to-use-memory-pytorch,牺牲计算速度减少显存用量,将计算过程分为两半,先计算一半模型的结果,保存中间结果再计算后面一半的模型。如下

# 输入
input = torch.rand(1, 10)
# 假设我们有一个非常深的网络
layers = [nn.Linear(10, 10) for _ in range(1000)]
model = nn.Sequential(*layers)
output = model(input)

### 可进行如下更改
# 首先设置输入的input=>requires_grad=True
# 如果不设置可能会导致得到的gradient为0
input = torch.rand(1, 10, requires_grad=True)
layers = [nn.Linear(10, 10) for _ in range(1000)]


# 定义要计算的层函数,可以看到我们定义了两个
# 一个计算前500个层,另一个计算后500个层
def run_first_half(*args):
    x = args[0]
    for layer in layers[:500]:
        x = layer(x)
    return x

def run_second_half(*args):
    x = args[0]
    for layer in layers[500:-1]:
        x = layer(x)
    return x

# 我们引入新加的checkpoint
from torch.utils.checkpoint import checkpoint

x = checkpoint(run_first_half, input)
x = checkpoint(run_second_half, x)
# 最后一层单独调出来执行
x = layers[-1](x)
x.sum.backward()  # 这样就可以了
  • 使用pooling,减小特征图的size。

  • 减少全连接层的使用。

  • relu(inplace=true),inplace_abn

  • 使用半精度float16。

  • optimizer的变换使用,理论上,sgd<momentum<adam,可以从计算公式中看出有额外的中间变量。

  • Depthwise Convolution。

  • 暂时想到这些,最后贴一张模型大小和准确率的图,忘记是哪篇paper了,侵删

                           


方便交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

记得备注呦

推荐阅读:

【ACL 2019】腾讯AI Lab解读三大前沿方向及20篇入选论文

【一分钟论文】IJCAI2019 | Self-attentive Biaffine Dependency  Parsing

【一分钟论文】 NAACL2019-使用感知句法词表示的句法增强神经机器翻译

【一分钟论文】Semi-supervised Sequence Learning半监督序列学习

【一分钟论文】Deep Biaffine Attention for Neural Dependency Parsing

详解Transition-based Dependency parser基于转移的依存句法解析器

经验 | 初入NLP领域的一些小建议

学术 | 如何写一篇合格的NLP论文

干货 | 那些高产的学者都是怎样工作的?

一个简单有效的联合模型

近年来NLP在法律领域的相关研究工作


让更多的人知道你“在看”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值