生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼

说到生成模型,VAEGAN可谓是“如雷贯耳”,本站也有过多次分享。此外,还有一些比较小众的选择,如flow模型VQ-VAE等,也颇有人气,尤其是VQ-VAE及其变体VQ-GAN,近期已经逐渐发展到“图像的Tokenizer”的地位,用来直接调用NLP的各种预训练方法。除了这些之外,还有一个本来更小众的选择——扩散模型(Diffusion Models)——正在生成模型领域“异军突起”,当前最先进的两个文本生成图像——OpenAI的DALL·E 2和Google的Imagen,都是基于扩散模型来完成的。

Imagen“文本-图片”的部分例子

从本文开始,我们开一个新坑,逐渐介绍一下近两年关于生成扩散模型的一些进展。据说生成扩散模型以数学复杂闻名,似乎比VAE、GAN要难理解得多,是否真的如此?扩散模型真的做不到一个“大白话”的理解?让我们拭目以待。

新的起点 #

其实我们在之前的文章《能量视角下的GAN模型(三):生成模型=能量模型》《从去噪自编码器到生成模型》也简单介绍过扩散模型。说到扩散模型,一般的文章都会提到能量模型(Energy-based Models)、得分匹配(Score Matching)、朗之万方程(Langevin Equation)等等,简单来说,是通过得分匹配等技术来训练能量模型,然后通过郎之万方程来执行从能量模型的采样。

从理论上来讲,这是一套很成熟的方案,原则上可以实现任何连续型对象(语音、图像等)的生成和采样。但从实践角度来看,能量函数的训练是一件很艰难的事情,尤其是数据维度比较大(比如高分辨率图像)时,很难训练出完备能量函数来;另一方面,通过朗之万方程从能量模型的采样也有很大的不确定性,得到的往往是带有噪声的采样结果。所以很长时间以来,这种传统路径的扩散模型只是在比较低分辨率的图像上做实验。

如今生成扩散模型的大火,则是始于2020年所提出的DDPM(Denoising Diffusion Probabilistic Model),虽然也用了“扩散模型”这个名字,但事实上除了采样过程的形式有一定的相似之外,DDPM与传统基于朗之万方程采样的扩散模型可以说完全不一样,这完全是一个新的起点、新的篇章。

准确来说,DDPM叫“渐变模型”更为准确一些,扩散模型这一名字反而容易造成理解上的误解,传统扩散模型的能量模型、得分匹配、朗之万方程等概念,其实跟DDPM及其后续变体都没什么关系。有意思的是,DDPM的数学框架其实在ICML2015的论文《Deep Unsupervised Learning using Nonequilibrium Thermodynamics》就已经完成了,但DDPM是首次将它在高分辨率图像生成上调试出来了,从而引导出了后面的火热。由此可见,一个模型的诞生和流行,往往还需要时间和机遇,

拆楼建楼 #

很多文章在介绍DDPM时,上来就引入转移分布,接着就是变分推断,一堆数学记号下来,先吓跑了一群人(当然,从这种介绍我们可以再次看出,DDPM实际上是VAE而不是扩散模型),再加之人们对传统扩散模型的固有印象,所以就形成了“需要很高深的数学知识”的错觉。事实上,DDPM也可以有一种很“大白话”的理解,它并不比有着“造假-鉴别”通俗类比的GAN更难。

首先,我们想要做一个像GAN那样的生成模型,它实际上是将一个随机噪声z�变换成一个数据样本x�的过程:

随机噪声z类比⏐↓⏐砖瓦水泥−→−−−−−变换−→−−−−−建设样本数据x⏐↓⏐类比高楼大厦(1)(1)随机噪声�→变换样本数据�类比↓↓类比砖瓦水泥→建设高楼大厦

我们可以将这个过程想象为“建设”,其中随机噪声z�是砖瓦水泥等原材料,样本数据x�是高楼大厦,所以生成模型就是一支用原材料建设高楼大厦的施工队。

这个过程肯定很难的,所以才有了那么多关于生成模型的研究。但俗话说“破坏容易建设难”,建楼你不会,拆楼你总会了吧?我们考虑将高楼大厦一步步地拆为砖瓦水泥的过程:设x0�0为建好的高楼大厦(数据样本),xT��为拆好的砖瓦水泥(随机噪声),假设“拆楼”需要T�步,整个过程可以表示为

x=x0→x1→x2→⋯→xT−1→xT=z(2)(2)�=�0→�1→�2→⋯→��−1→��=�


建高楼大厦的难度在于,从原材料xT��到最终高楼大厦x0�0的跨度过大,普通人很难理解xT��是怎么一下子变成x0�0的。但是,当我们有了“拆楼”的中间过程x1,x2,⋯,xT�1,�2,⋯,��后,我们知道xt−1→xt��−1→��代表着拆楼的一步,那么反过来xt→xt−1��→��−1不就是建楼的一步?如果我们能学会两者之间的变换关系xt−1=μ(xt)��−1=�(��),那么从xT��出发,反复地执行xT−1=μ(xT)��−1=�(��)xT−2=μ(xT−1)��−2=�(��−1)、...,最终不就能造出高楼大厦x0�0出来?

该怎么拆 #

正所谓“饭要一口一口地吃”,楼也要一步一步地建,DDPM做生成模型的过程,其实跟上述“拆楼-建楼”的类比是完全一致的,它也是先反过来构建一个从数据样本渐变到随机噪声的过程,然后再考虑其逆变换,通过反复执行逆变换来完成数据样本的生成,所以本文前面才说DDPM这种做法其实应该更准确地称为“渐变模型”而不是“扩散模型”。

具体来说,DDPM将“拆楼”的过程建模为

xt=αtxt−1+βtεt,εt∼N(0,I)(3)(3)��=����−1+����,��∼�(0,�)


其中有αt,βt>0��,��>0α2t+β2t=1��2+��2=1βt��通常很接近于0,代表着单步“拆楼”中对原来楼体的破坏程度,噪声εt��的引入代表着对原始信号的一种破坏,我们也可以将它理解为“原材料”,即每一步“拆楼”中我们都将xt−1��−1拆解为“αtxt−1����−1的楼体 + βtεt����的原料”。提示:本文αt,βt��,��的定义跟原论文不一样。)

反复执行这个拆楼的步骤,我们可以得到:

xt====αtxt−1+βtεtαt(αt−1xt−2+βt−1εt−1)+βtεt⋯(αt⋯α1)x0+(αt⋯α2)β1ε1+(αt⋯α3)β2ε2+⋯+αtβt−1εt−1+βtεt多个相互独立的正态噪声之和(4)(4)��=����−1+����=��(��−1��−2+��−1��−1)+����=⋯=(��⋯�1)�0+(��⋯�2)�1�1+(��⋯�3)�2�2+⋯+����−1��−1+����⏟多个相互独立的正态噪声之和


可能刚才读者就想问为什么叠加的系数要满足α2t+β2t=1��2+��2=1了,现在我们就可以回答这个问题。首先,式中花括号所指出的部分,正好是多个独立的正态噪声之和,其均值为0,方差则分别为(αt⋯α2)2β21(��⋯�2)2�12(αt⋯α3)2β22(��⋯�3)2�22、...、α2tβ2t−1��2��−12β2t��2;然后,我们利用一个概率论的知识——正态分布的叠加性,即上述多个独立的正态噪声之和的分布,实际上是均值为0、方差为(αt⋯α2)2β21+(αt⋯α3)2β22+⋯+α2tβ2t−1+β2t(��⋯�2)2�12+(��⋯�3)2�22+⋯+��2��−12+��2的正态分布;最后,在α2t+β2t=1��2+��2=1恒成立之下,我们可以得到式(4)(4)的各项系数平方和依旧为1,即

(αt⋯α1)2+(αt⋯α2)2β21+(αt⋯α3)2β22+⋯+α2tβ2t−1+β2t=1(5)(5)(��⋯�1)2+(��⋯�2)2�12+(��⋯�3)2�22+⋯+��2��−12+��2=1


所以实际上相当于有

xt=(αt⋯α1)记为α¯tx0+1−(αt⋯α1)2−−−−−−−−−−−−√记为β¯tε¯t,ε¯t∼N(0,I)(6)(6)��=(��⋯�1)⏟记为�¯��0+1−(��⋯�1)2⏟记为�¯��¯�,�¯�∼�(0,�)


这就为计算xt��提供了极大的便利。另一方面,DDPM会选择适当的αt��形式,使得有α¯T≈0�¯�≈0,这意味着经过T�步的拆楼后,所剩的楼体几乎可以忽略了,已经全部转化为原材料ε�提示:本文α¯t�¯�的定义跟原论文不一样。)

又如何建 #

“拆楼”是xt−1→xt��−1→��的过程,这个过程我们得到很多的数据对(xt−1,xt)(��−1,��),那么“建楼”自然就是从这些数据对中学习一个xt→xt−1��→��−1的模型。设该模型为μ(xt)�(��),那么容易想到学习方案就是最小化两者的欧氏距离:

∥xt−1−μ(xt)∥2(7)(7)‖��−1−�(��)‖2


其实这已经非常接近最终的DDPM模型了,接下来让我们将这个过程做得更精细一些。首先“拆楼”的式(3)(3)可以改写为xt−1=1αt(xt−βtεt)��−1=1��(��−����),这启发我们或许可以将“建楼”模型μ(xt)�(��)设计成

μ(xt)=1αt(xt−βtϵθ(xt,t))(8)(8)�(��)=1��(��−����(��,�))


的形式,其中θ�是训练参数,将其代入到损失函数,得到

∥xt−1−μ(xt)∥2=β2tα2t∥εt−ϵθ(xt,t)∥2(9)(9)‖��−1−�(��)‖2=��2��2‖��−��(��,�)‖2


前面的因子β2tα2t��2��2代表loss的权重,这个我们可以暂时忽略,最后代入结合式(6)(6)(3)(3)所给出xt��的表达式

xt=αtxt−1+βtεt=αt(α¯t−1x0+β¯t−1ε¯t−1)+βtεt=α¯tx0+αtβ¯t−1ε¯t−1+βtεt(10)(10)��=����−1+����=��(�¯�−1�0+�¯�−1�¯�−1)+����=�¯��0+���¯�−1�¯�−1+����


得到损失函数的形式为

∥∥εt−ϵθ(α¯tx0+αtβ¯t−1ε¯t−1+βtεt,t)∥∥2(11)(11)‖��−��(�¯��0+���¯�−1�¯�−1+����,�)‖2


可能读者想问为什么要回退一步来给出xt��,直接根据式(6)(6)来给出xt��可以吗?答案是不行,因为我们已经事先采样了εt��,而εt��ε¯t�¯�不是相互独立的,所以给定εt��的情况下,我们不能完全独立地采样ε¯t�¯�

降低方差 #

原则上来说,损失函数(11)(11)就可以完成DDPM的训练,但它在实践中可能有方差过大的风险,从而导致收敛过慢等问题。要理解这一点并不困难,只需要观察到式(11)(11)实际上包含了4个需要采样的随机变量:

1、从所有训练样本中采样一个x0�0

2、从正态分布N(0,I)�(0,�)中采样ε¯t−1,εt�¯�−1,��(两个不同的采样结果);

3、从1∼T1∼�中采样一个t�

要采样的随机变量越多,就越难对损失函数做准确的估计,反过来说就是每次对损失函数进行估计的波动(方差)过大了。很幸运的是,我们可以通过一个积分技巧来将ε¯t−1,εt�¯�−1,��合并成单个正态随机变量,从而缓解一下方差大的问题。

这个积分确实有点技巧性,但也不算复杂。由于正态分布的叠加性,我们知道αtβ¯t−1ε¯t−1+βtεt���¯�−1�¯�−1+����实际上相当于单个随机变量β¯tε|ε∼N(0,I)�¯��|�∼�(0,�),同理βtε¯t−1−αtβ¯t−1εt���¯�−1−���¯�−1��实际上相当于单个随机变量β¯tω|ω∼N(0,I)�¯��|�∼�(0,�),并且可以验证E[εω⊤]=0�[��⊤]=0,所以这是两个相互独立的正态随机变量。

接下来,我们反过来将εt��ε,ω�,�重新表示出来

εt=(βtε−αtβ¯t−1ω)β¯tβ2t+α2tβ¯2t−1=βtε−αtβ¯t−1ωβ¯t(12)(12)��=(���−���¯�−1�)�¯���2+��2�¯�−12=���−���¯�−1��¯�


代入到式(11)(11)得到

=Eε¯t−1,εt∼N(0,I)[∥∥εt−ϵθ(α¯tx0+αtβ¯t−1ε¯t−1+βtεt,t)∥∥2]Eω,ε∼N(0,I)[∥∥∥βtε−αtβ¯t−1ωβ¯t−ϵθ(α¯tx0+β¯tε,t)∥∥∥2](13)(13)��¯�−1,��∼�(0,�)[‖��−��(�¯��0+���¯�−1�¯�−1+����,�)‖2]=��,�∼�(0,�)[‖���−���¯�−1��¯�−��(�¯��0+�¯��,�)‖2]


注意到,现在损失函数关于ω�只是二次的,所以我们可以展开然后将它的期望直接算出来,结果是

β2tβ¯2tEε∼N(0,I)[∥∥∥ε−β¯tβtϵθ(α¯tx0+β¯tε,t)∥∥∥2]+常数(14)(14)��2�¯�2��∼�(0,�)[‖�−�¯�����(�¯��0+�¯��,�)‖2]+常数


再次省掉常数和损失函数的权重,我们得到DDPM最终所用的损失函数:

∥∥∥ε−β¯tβtϵθ(α¯tx0+β¯tε,t)∥∥∥2(15)(15)‖�−�¯�����(�¯��0+�¯��,�)‖2


提示:原论文中的ϵθ��实际上就是本文的β¯tβtϵθ�¯�����,所以大家的结果是完全一样的。)

递归生成 #

至此,我们算是把DDPM的整个训练流程捋清楚了。内容写了不少,你要说它很容易,那肯定说不上,但真要说非常困难的地方也几乎没有——没有用到传统的能量函数、得分匹配等工具,甚至连变分推断的知识都没有用到,只是借助“拆楼-建楼”的类比和一些基本的概率论知识,就能得到完全一样的结果。所以说,以DDPM为代表的新兴起的生成扩散模型,实际上没有很多读者想象的复杂,它可以说是我们从“拆解-重组”的过程中学习新知识的形象建模。

训练完之后,我们就可以从一个随机噪声xT∼N(0,I)��∼�(0,�)出发执行T�步式(8)(8)来进行生成:

xt−1=1αt(xt−βtϵθ(xt,t))(16)(16)��−1=1��(��−����(��,�))


这对应于自回归解码中的Greedy Search。如果要进行Random Sample,那么需要补上噪声项:

xt−1=1αt(xt−βtϵθ(xt,t))+σtz,z∼N(0,I)(17)(17)��−1=1��(��−����(��,�))+���,�∼�(0,�)


一般来说,我们可以让σt=βt��=��,即正向和反向的方差保持同步。这个采样过程跟传统扩散模型的朗之万采样不一样的地方在于:DDPM的采样每次都从一个随机噪声出发,需要重复迭代T�步来得到一个样本输出;朗之万采样则是从任意一个点出发,反复迭代无限步,理论上这个迭代无限步的过程中,就把所有数据样本都被生成过了。所以两者除了形式相似外,实质上是两个截然不同的模型。

从这个生成过程中,我们也可以感觉到它其实跟Seq2Seq的解码过程是一样的,都是串联式的自回归生成,所以生成速度是一个瓶颈,DDPM设了T=1000�=1000,意味着每生成一个图片,需要将ϵθ(xt,t)��(��,�)反复执行1000次,因此DDPM的一大缺点就是采样速度慢,后面有很多工作都致力于提升DDPM的采样速度。而说到“图片生成 + 自回归模型 + 很慢”,有些读者可能会联想到早期的PixelRNNPixelCNN等模型,它们将图片生成转换成语言模型任务,所以同样也是递归地进行采样生成以及同样地慢。那么DDPM的这种自回归生成,跟PixelRNN/PixelCNN的自回归生成,又有什么实质区别呢?为什么PixelRNN/PixelCNN没大火起来,反而轮到了DDPM?

了解PixelRNN/PixelCNN的读者都知道,这类生成模型是逐个像素逐个像素地生成图片的,而自回归生成是有序的,这就意味着我们要提前给图片的每个像素排好顺序,最终的生成效果跟这个顺序紧密相关。然而,目前这个顺序只能是人为地凭着经验来设计(这类经验的设计都统称为“Inductive Bias”),暂时找不到理论最优解。换句话说,PixelRNN/PixelCNN的生成效果很受Inductive Bias的影响。但DDPM不一样,它通过“拆楼”的方式重新定义了一个自回归方向,而对于所有的像素来说则都是平权的、无偏的,所以减少了Inductive Bias的影响,从而提升了效果。此外,DDPM生成的迭代步数是固定的T�,而PixelRNN/PixelCNN则是等于图像分辨率(宽×高×通道数宽×高×通道数),所以DDPM生成高分辨率图像的速度要比PixelRNN/PixelCNN快得多。

超参设置 #

这一节我们讨论一下超参的设置问题。

在DDPM中,T=1000�=1000,可能比很多读者的想象数值要大,那为什么要设置这么大的T�呢?另一边,对于αt��的选择,将原论文的设置翻译到本博客的记号上,大致上是

αt=1−0.02tT−−−−−−−−√(18)(18)��=1−0.02��


这是一个单调递减的函数,那为什么要选择单调递减的αt��呢?

其实这两个问题有着相近的答案,跟具体的数据背景有关。简单起见,在重构的时候我们用了欧氏距离(7)(7)作为损失函数,而一般我们用DDPM做图片生成,以往做过图片生成的读者都知道,欧氏距离并不是图片真实程度的一个好的度量,VAE用欧氏距离来重构时,往往会得到模糊的结果,除非是输入输出的两张图片非常接近,用欧氏距离才能得到比较清晰的结果,所以选择尽可能大的T�,正是为了使得输入输出尽可能相近,减少欧氏距离带来的模糊问题。

选择单调递减的αt��也有类似考虑。当t�比较小时,xt��还比较接近真实图片,所以我们要缩小xt−1��−1xt��的差距,以便更适用欧氏距离(7)(7),因此要用较大的αt��;当t�比较大时,xt��已经比较接近纯噪声了,噪声用欧式距离无妨,所以可以稍微增大xt−1��−1xt��的差距,即可以用较小的αt��。那么可不可以一直用较大的αt��呢?可以是可以,但是要增大T�。注意在推导(6)(6)时,我们说过应该有α¯T≈0�¯�≈0,而我们可以直接估算

logα¯T=∑t=1Tlogαt=12∑t=1Tlog(1−0.02tT)<12∑t=1T(−0.02tT)=−0.005(T+1)(19)(19)log⁡�¯�=∑�=1�log⁡��=12∑�=1�log⁡(1−0.02��)<12∑�=1�(−0.02��)=−0.005(�+1)


代入T=1000�=1000大致是α¯T≈e−5�¯�≈�−5,这个其实就刚好达到≈0≈0的标准。所以如果从头到尾都用较大的αt��,那么必然要更大的T�才能使得α¯T≈0�¯�≈0了。

最后我们留意到,“建楼”模型中的ϵθ(α¯tx0+β¯tε,t)��(�¯��0+�¯��,�)中,我们在输入中显式地写出了t�,这是因为原则上不同的t�处理的是不同层次的对象,所以应该用不同的重构模型,即应该有T�个不同的重构模型才对,于是我们共享了所有重构模型的参数,将t�作为条件传入。按照论文附录的说法,t�是转换成《Transformer升级之路:1、Sinusoidal位置编码追根溯源》介绍的位置编码后,直接加到残差模块上去的。

文章小结 #

本文从“拆楼-建楼”的通俗类比中介绍了最新的生成扩散模型DDPM,在这个视角中,我们可以通过较为“大白话”的描述以及比较少的数学推导,来得到跟原始论文一模一样的结果。总的来说,本文说明了DDPM也可以像GAN一样找到一个形象类比,它既可以不用到VAE中的“变分”,也可以不用到GAN中的“概率散度”、“最优传输”,从这个意义上来看,DDPM甚至算得上比VAE、GAN还要简单。

转载到请包括本文地址:生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼 - 科学空间|Scientific Spaces

更详细的转载事宜请参考:《科学空间FAQ》

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值