目标检测中的Label Assignment

本文探讨了目标检测中Label Assignment的重要性,包括学习目标表示(如anchor box, anchor point, key point和set prediction)和正负样本分配策略(如IoU阈值,空间和尺寸限制,Soft-weighted anchor points以及匈牙利算法)。文章举例了ATSS、SAPD、AutoAssign和DETR等方法,阐述了它们在优化Label assignment方面的贡献。" 137879680,7478178,ARMv8架构下ret_to_user过程详解,"['Linux内核', 'ARM架构', '中断处理', '异常处理', '调试技术']
摘要由CSDN通过智能技术生成

©PaperWeekly 原创 · 作者|燕皖

单位|渊亭科技

研究方向|计算机视觉、CNN

Label Assignment

Label assignment 主要是指检测算法在训练阶段,如何给特征图上的每个位置进行合适的学习目标的表示,以及如何进行正负样本的分配的。也就是说 label assignment 有两个方面的内容:

1.1 学习目标的表示

对与如何给特征图上的每个位置赋予合适的学习目标这个问题,因为先验的不同,不同类型的算法的学习目标的表示也不一样:

anchor box 类检测器:这类检测方法都是采用 bounding box(x,y,w,h)的方法来表示图像中的一个目标。通过预测一个 4 维向量,也就是参数化坐标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值