NeurIPS 2020有哪些值得读的「图神经网络」论文?

本文精选了NeurIPS 2020大会中8篇关于图神经网络(GNN)的论文,涵盖GNN在异质性图的局限性、异质图表示学习、图池化技术、图对比学习等多个主题。通过这些论文,读者可以了解到GNN在面对不同挑战时的解决方案,以及如何通过自监督学习、元路径辅助学习和图元学习等方法提升GNN的表现。
摘要由CSDN通过智能技术生成

在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。如果你也希望让自己的科研成果被更多人看到,欢迎在后台回复「论文推荐」

本期我们筛选了 8 篇 NeurIPS 2020「图神经网络」领域的最新论文,一起来看看读过这些论文的推荐人的推荐理由与个人评价吧!

本期推荐人:纪厚业,北京邮电大学 DMGroup 在读博士生,主要研究方向为异质图分析,图表示学习(图神经网络)和推荐系统。

01

GNN在异质性图上的局限性

论文标题Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

论文作者:Jiong Zhu / Yujun Yan / Lingxiao Zhao / Mark Heimann / Leman Akoglu / Danai Koutra

论文来源:NeurIPS 2020

论文链接http://www.paperweekly.site/papers/4732

这是一篇较为基础的 GNN 文章,主要分析了 GNN 在异质性较强(同质性较弱)的图数据上的局限性。异质性指的是相连的节点的标签有大量不同的标签或者不相似的特征。在这样的图数据上,现有的 GNN 泛化性很差甚至比不过 MLP。 

受上述现象启发,作者提出了一个核心设计:ego Embedding 和 neighbor Embedding 的分离,这强化在异质性图上结构学习的能力。基于上述设计,一种更为强大的 GNN H2GCN 被提出,并取得了非常夸张的提升(提升幅度高达 40% 和 27%)。在同质性数据上,H2GCN 的效果也非常好。本文最大的贡献是分析了现有 GNN 在异质性强的图数据集上的局限性,这对于一大类图挖掘都是很有启发意义的。

02

异质图表示学习

论文标题Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs

论文作者:Dasol Hwang / Jinyoung Park / Sunyoung Kwon / Kyung-Min Kim / Jung-Woo Ha / Hyunwoo J. Kim

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值