在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。如果你也希望让自己的科研成果被更多人看到,欢迎在后台回复「论文推荐」。
本期我们筛选了 8 篇 NeurIPS 2020「图神经网络」领域的最新论文,一起来看看读过这些论文的推荐人的推荐理由与个人评价吧!
本期推荐人:纪厚业,北京邮电大学 DMGroup 在读博士生,主要研究方向为异质图分析,图表示学习(图神经网络)和推荐系统。
01
GNN在异质性图上的局限性
论文标题:Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
论文作者:Jiong Zhu / Yujun Yan / Lingxiao Zhao / Mark Heimann / Leman Akoglu / Danai Koutra
论文来源:NeurIPS 2020
论文链接:http://www.paperweekly.site/papers/4732
这是一篇较为基础的 GNN 文章,主要分析了 GNN 在异质性较强(同质性较弱)的图数据上的局限性。异质性指的是相连的节点的标签有大量不同的标签或者不相似的特征。在这样的图数据上,现有的 GNN 泛化性很差甚至比不过 MLP。
受上述现象启发,作者提出了一个核心设计:ego Embedding 和 neighbor Embedding 的分离,这强化在异质性图上结构学习的能力。基于上述设计,一种更为强大的 GNN H2GCN 被提出,并取得了非常夸张的提升(提升幅度高达 40% 和 27%)。在同质性数据上,H2GCN 的效果也非常好。本文最大的贡献是分析了现有 GNN 在异质性强的图数据集上的局限性,这对于一大类图挖掘都是很有启发意义的。
02
异质图表示学习
论文标题:Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs
论文作者:Dasol Hwang / Jinyoung Park / Sunyoung Kwon / Kyung-Min Kim / Jung-Woo Ha / Hyunwoo J. Kim