WWW 2021 | 融合先验知识的BERT注意力模型

本文研究了如何利用外部知识提升BERT在文本语义匹配任务的效果。通过数据增强分析和逐层表现分析,发现BERT在同义词理解和利用上存在不足。提出了将词相似矩阵引入底层注意力计算,以同义词知识增强模型底层表现,从而提高模型性能。实验结果显示这种方法在多个语义匹配数据集上取得了积极效果。

©PaperWeekly 原创 · 作者|张琨

学校|中国科学技术大学博士生

研究方向|自然语言处理

Motivation

BERT 等预训练模型使得自然语言处理等相关研究能够充分利用大规模的无标注语料,推动了整个自然语言处理的发展。那么接下来如何进一步提升 BERT 等模型的效果是研究人员关注的一个重点。除了结构,训练方式等,一个重要的分支就是使用外部知识,利用外部知识提升模型的效果。

常规做法是增加一个额外的任务帮助模型利用外部知识,这种存在一个问题,额外的任务会影响 BERT 本身的结构和参数,因此提升效果是不稳定的,有没有更加简单有效的方法提升模型的效果呢?

针对这个问题,本文针对 BERT 在文本语义匹配任务上进行了一个深入的研究,并设计了一种简单有效的外部知识利用方法。

论文标题:

Using Prior Knowledge to Guide BERT’s Attention in Semantic Textual Matching Tasks

论文作者:

Tingyu Xia / Yue Wang / Yuan Tian / Yi Chang

论文链接:

https://arxiv.org/abs/2102.10934

代码链接:

https://github.com/xiatingyu/Bert_sim

### 多模态先验融合机制的概念 多模态先验融合机制是指在多模态学习过程中,利用预先获取的领域知识或数据分布信息来指导模型设计和优化的一种方法。这种机制通常基于对任务和数据特性的深入理解,并通过建模过程中的结构化约束、损失函数设计或特征表示优化等方式融入到模型中[^1]。 在多模态场景下,先验信息可以包括跨模态相关性假设(例如文本描述与图像内容的一致性)、数据分布特性(如高斯分布或稀疏性假设)以及任务特定的知识(如情感分析中的语义关联)。这些先验知识能够帮助模型更好地捕捉不同模态间的潜在关系,并提升最终性能[^2]。 ### 应用场景 #### 1. 自然语言处理自然语言处理任务中,例如对话系统和情感分析,多模态先验融合机制可以通过结合上下文信息、视觉线索或语音特征来增强模型的理解能力。例如,在情绪分析中,隐式多模态对齐起着至关重要的作用,一种基于多模态图的对齐方法(MGAM)被提出,用于联合建模显式信息(例如对象、情感)和隐式多模态交互(例如图像-文本关系)[^3]。 #### 2. 计算机视觉 在计算机视觉任务中,多模态先验融合机制被广泛应用于物体识别、图像分类和语义分割等领域。通过引入先验知识,例如场景结构或对象间的关系,模型可以更准确地解析复杂场景并进行高效推理。此外,图结构方式提供了关系建模的视角,为解决这些问题提供了新的思路[^1]。 #### 3. 医疗影像分析 医疗影像分析是另一个重要应用领域,其中多模态先验融合机制有助于病灶检测、病理分析和诊断辅助等任务。通过整合来自不同来源的数据(如MRI、CT扫描和临床记录),模型能够利用这些数据之间的互补性和一致性来提高诊断准确性。这种方法不仅提升了模型的泛化能力,还改进了多模态信息的整合方式[^4]。 ### 算法步骤详解 #### 输入预处理 对多模态数据进行预处理,包括文本清洗、图像缩放、音频采样等,确保数据格式一致。这一阶段可能还会应用特定领域的先验知识来指导数据处理流程[^2]。 #### 特征提取 使用针对每种模态的特征提取网络(如BERT、ResNet、CNN等)来提取模态特征。在此过程中,先验知识可以帮助选择最适合当前任务的特征提取方法[^2]。 #### 模态间关联学习 利用跨模态注意力机制或其他形式的相关性建模技术,学习不同模态特征之间的相互关系。此步骤旨在增强模型的跨模态理解能力,并且可以结合具体的先验假设来进行优化[^2]。 #### 跨模态融合 将不同模态的特征映射到共同的表示空间,通过加权或融合操作整合多模态信息。这一步骤可能会采用一些先验约束来保证融合后的特征具有良好的可解释性和实用性。 #### 多模态生成 基于融合后的多模态特征,通过生成模型(如GAN、VAE等)生成新的多模态信息或决策。此时,先验知识可用于指导生成过程以满足特定需求。 ### 数学模型和公式 构建数学模型时,需要考虑如何将先验知识转化为具体的数学表达式。这可能涉及到损失函数的设计、正则项的选择以及参数初始化策略等多个方面。例如,在某些情况下,可以通过添加额外的约束条件来鼓励模型学习符合预期的行为模式[^2]。 ```python def example_prior_fusion_model(): # 示例代码:定义一个简单的多模态先验融合模型 import torch from torch import nn class PriorFusionModel(nn.Module): def __init__(self, text_dim, image_dim, hidden_dim): super(PriorFusionModel, self).__init__() self.text_encoder = nn.Linear(text_dim, hidden_dim) self.image_encoder = nn.Linear(image_dim, hidden_dim) self.fusion_layer = nn.Linear(hidden_dim * 2, hidden_dim) def forward(self, text_input, image_input): text_features = self.text_encoder(text_input) image_features = self.image_encoder(image_input) combined = torch.cat((text_features, image_features), dim=1) fused_features = self.fusion_layer(combined) return fused_features model = PriorFusionModel(768, 2048, 512) # 假设文本维度为768,图像维度为2048 return model ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值