WWW 2021 | 融合先验知识的BERT注意力模型

本文研究了如何利用外部知识提升BERT在文本语义匹配任务的效果。通过数据增强分析和逐层表现分析,发现BERT在同义词理解和利用上存在不足。提出了将词相似矩阵引入底层注意力计算,以同义词知识增强模型底层表现,从而提高模型性能。实验结果显示这种方法在多个语义匹配数据集上取得了积极效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

©PaperWeekly 原创 · 作者|张琨

学校|中国科学技术大学博士生

研究方向|自然语言处理

Motivation

BERT 等预训练模型使得自然语言处理等相关研究能够充分利用大规模的无标注语料,推动了整个自然语言处理的发展。那么接下来如何进一步提升 BERT 等模型的效果是研究人员关注的一个重点。除了结构,训练方式等,一个重要的分支就是使用外部知识,利用外部知识提升模型的效果。

常规做法是增加一个额外的任务帮助模型利用外部知识,这种存在一个问题,额外的任务会影响 BERT 本身的结构和参数,因此提升效果是不稳定的,有没有更加简单有效的方法提升模型的效果呢?

针对这个问题,本文针对 BERT 在文本语义匹配任务上进行了一个深入的研究,并设计了一种简单有效的外部知识利用方法。

论文标题:

Using Prior Knowledge to Guide BERT’s Attention in Semantic Textual Matching Tasks

论文作者:

Tingyu Xia / Yue Wang / Yuan Tian / Yi Chang

论文链接:

https://arxiv.org/abs/2102.10934

代码链接:

https://github.com/xiatingyu/Bert_sim

Method

为了分析如何引入外部知识,引入何种外部知识࿰

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值