ACL 2022 | 引入角度margin构建对比学习目标,增强文本语义判别能力

3f0f6b9196a0dcc2c5132413e9aa552a.gif

©作者 | 牟宇滔

单位 | 北京邮电大学

研究方向 | 自然语言理解

09986bb67869c22db83cc103f7969494.png

论文标题:

A Contrastive Framework for Learning Sentence Representations from Pairwise and Triple-wise Perspective in Angular Space

文章来源:

ACL 2022

文章链接:

https://aclanthology.org/2022.acl-long.336/



0a1a51aa5b51fcf229ab309abae826eb.png


Overview

聚焦的问题:近年来基于对比学习的句子表示学习研究取得了较大的进展,但是大多数方法都只关注如何挑选对比学习的正负样本对,而几乎没有人去关注对比学习目标函数本身。实际上,大家普遍使用的 NT-Xent 对比损失存在两个问题:1)判别能力不强,易受到噪声数据干扰;2)无法建模多个句子间的语义顺序。

5b9b7e97133d9acffa09a1c12cd43b1e.png

▲ 这里展示了三个不同句子的表示可视化,不同颜色代表不同句子,每个句子经过BERT模型多次不同的dropout,因此表征具有一定的随机性(dropout可以看成一种噪声)。可以看出SimCSE得到的表征Sb和Sc不能很好地区分开。此外,我们可以看出Sa应该与Sb语义更相近,与Sc语义相对更远,这种关系没能建模。

提出的方法:本文提出一种 ArcSCE 方法,基本思想是将之前在欧氏空间中进行操作的 NT-Xent 目标函数转换到角度空间中,目的是强化成对判别性特征,并建模句子间的语义顺序关系。


7a85a9780688ad90deb628e44e9eb3d5.png


Method

ArcCSE 框架分为两个部分,一是成对判别性建模;二是三元语义顺序建模。分别设计了两个对比学习损失函数进行联合优化。

26c1f45e740eb93124ca16be62e3aa9c.jpeg

▲ ArcCSE框架。对于左边的成对相似性建模,与SimCSE做法相同,都是将每句话dropout两次过编码器;对于右边的三元语义顺序建模,不做dropout操作,而是将同一句话mask两次,构造三元组。

2.1 Angular Margin based Contrastive Learning

这个模块的目的与 SimCSE 相同,都是为了让正样本拉近,负样本拉远,其中正样本是 dropout 增强的样本,负样本是 batch 内其他样本。如果像 SimCSE 一样使用如下传统的 NT-Xent 目标函数:

d36ce34fe6c89020046e50e4590fb66a.png

▲ 两个表征的相似性用余弦相似度计算

作者认为这样目标函数判别能力不够出色,并且容易受到噪声数据的影响。为了更好地理解这两个问题,我们可以做一个数学变换,将余弦相似度(欧氏空间度量指标)转换为角度(角度空间度量指标)。

ed9605a1a11f7dbc39ad36f16504457d.png

▲ 将余弦相似度转换为角度,余弦相似度越大,角度越小

这样一来,我们就可以画出 NT-Xent 函数的判别边界如下:

5394015c637c38f413e6fccf6b1fa6c7.png

▲ 这个图其实说明的是对于每个anchor,正样本和负样本的相似性度量之间的关系。橙色区域是优化的方向。

对于传统的 NT-Xent 目标函数,由于缺乏一个较大的决策 margin,因此决策边缘微小的扰动都可能错误决策。为了克服这个问题,作者提出了一个新的目标,即通过增加一个角度 margin 来得到更鲁棒的句子表示,新目标函数如下:

383001a8fffa7255ba2741efcc4433d0.png

2.2 Modeling Entailment Relation of Triplet Sentences

为了让模型能够学习到多个句子间的语义相似性顺序关系,作者提出了一个新的预训练任务,建模三元句子对的蕴含关系。首先,通过对一句话按不同的 mask 比例做两次 mask,得到三元组句子对。

4ab61b3c403f2b47eb5922093dd041e6.png

▲ 通过不同mask比例显示构造这三句话的语义顺序

然后用如下三元损失函数进行训练:

6a4df19e7112bc303c8c613959b4f9bc.jpeg

92ba4a576075e62245a096cd348b7703.png


Experiments

3.1 主实验

本文聚焦的是句子表示学习,因此在两种句子相关的任务上进行了评估:一是 STS(文本语义相似性评估),二是 SentEval Transfer Tasks(将本文方法得到的句子表示用于各种下游任务中)。

8edf8cab46a8acff9e109e61d089a37e.png

▲ 在各种STS数据集上进行评估

96d52e0f78d7bdffc8ea3841127bf321.png

▲ 将学习到的句子表示用于各种下游任务中

3.2 Alignment and Uniformity Analysis

对比学习有两个重要性质,Alignment 指的是希望相似实例能够产生尽可能相近的表征,Uniformity 指的是希望表征分布尽可能均匀,有利于保留最大的信息量。

bffdb6a27ff13b794a63244f4a7c7c0d.png

0e2f081a52fe1a05bff6f1de1de96044.png

作者在训练过程中每 10 个 epoch 计算一次两个指标,结果如下图所示。可以看出相比于 SimCSE,ArcCSE 可以得到更好的 alignment 性质,和相当的 uniformity 性质。

caf56faacc4f4d8ae2315bbf3ef743ba.png

更多阅读

2dd483ade027ff27d1dd155d387d6465.png

52a699f815f7499f901a924474da8380.png

7d42087066fb5a36a5bddd933e98f128.png

c6d0bc45df72481c8afbb712eabd057e.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

341d800b522f6cfae00557447c4e646c.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

64a3d14c53f80f7d6d1b204b63c31b11.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值