ECCV 2022 | 港中文MMLab:基于Transformer的光流

FlowFormer是港中文MMLab在ECCV 2022上提出的一种新方法,将Transformer架构引入光流估计,显著提高了性能。通过Alternate-Group Transformer (AGT)层和Recurrent Transformer Decoder,FlowFormer在Sintel和KITTI数据集上展现出优秀的泛化性和精度,降低误差达50.4%和45.3%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

629d72abbe325eceadcb8c873bb8bc48.gif

©PaperWeekly 原创 · 作者 | Zhaoyang Huang

单位 | 香港中文大学MMLab

研究方向 | 视觉关联性学习

Transformer 今年在图像领域展现出了很好地性能,相比于 CNN,它们的优势之一是基于注意力机制的长程建模能力。本文解读港中文 MMLab 在 ECCV 2022 上发表的论文《FlowFormer: A Transformer Architecture for Optical Flow》。这项工作提出了 FlowFormer 算法将 Transformer 结构结合进光流估计的框架中,显著提升了光流估计的性能。

只在 FlyingChairs+FlyingThings 上训练后,FlowFormer 在 Sintel Training 的 clean 与 final 两个子集中分别取得了 0.64 与 1.50 AEPE。与之前发表的最好结果(1.29 和 2.74)相比,误差下降了 50.4% 和 45.3%,体现了其卓越的泛化性。在公开的 Sintel benchmark(test)上,FlowFormer  在clean 和 final 两个子集中取得了 1.159 和 2.088 AEPE,降低了此前发表的最优误差(1.388 和 2.47)达 16.5% 和 15.5%。

e95db0c6c72fad3a790deb1dbc1ec96b.png

论文标题:

FlowFormer: A Transformer Architecture for Optical Flow

收录会议:

ECCV 2022

论文主页:

https://drinkingcoder.github.io/publication/flowformer/

33fd247904b63c02eed70d179218676e.png

9f4f85017b14ca0b0dfa83ce0a618751.png

论文介绍

光流的目标是估计源图像中每个像素在目标图像的对应位置,在许多下游任务,如动作识别、视频修复、视频超分等任务中提供重要输入。本文首先简要介绍 RAFT。RAFT 先使用一个孪生 CNN 从一对 H x W 图像中抽取视觉特征

<think>嗯,用户想了解多模态知识蒸馏的实现方法和相关论文、代码。首先,我需要明确多模态知识蒸馏的基本概念。根据引用[1],知识蒸馏在多模态学习中用于解决数据稀缺和模态交互复杂的问题。接下来,用户需要具体的实现方法,可能涉及不同模态间的知识传递,比如文本到图像或图像到文本。 然后,我应该考虑用户提到的论文和代码部分。引用[3]提到了ViLD方法,使用视觉和语言知识蒸馏进行开集检测,这可能是一个例子。另外,引用[2]中NVIDIA的跨领域小样本学习工作也相关,需要纳入回答。 用户的问题结构可能需要分点回答,先讲概念,再讲方法,然后提供论文和代码资源。要确保每个部分都有对应的引用支持。例如,跨模态蒸馏部分可以引用[1]中的内容,而具体模型如ViLD则引用[3]。 还需要注意用户可能对实现细节感兴趣,比如框架结构或损失函数设计。比如ViLD中的教师-学生模型和对比学习可能需要详细说明。同时,代码资源部分需要提供GitHub链接,确保链接有效,并推荐相关库如OpenMMLab。 最后,检查是否有遗漏的关键点,比如挑战和未来方向,虽然用户主要问方法,但简要提及这些可以增强回答的全面性。确保所有引用正确对应,避免混淆。可能还需要提醒用户参考具体论文和代码库以深入理解实现细节。</think>### 多模态知识蒸馏的实现方法与资源整理 #### 1. **核心概念** 多模态知识蒸馏(Multimodal Knowledge Distillation)通过将复杂多模态模型(教师模型)的知识迁移到轻量模型(学生模型),解决多模态学习中的数据稀缺、模态对齐和模型效率问题[^1][^3]。其核心是通过跨模态交互(如视觉-语言)或单模态内部的知识传递,提升学生模型在目标任务的泛化能力。 #### 2. **实现方法分类** ##### 2.1 跨模态知识蒸馏 - **定义**:将一种模态(如文本)的知识迁移到另一种模态(如图像)模型中 - **典型方法**: - **ViLD**(Vision-Language Distillation):教师模型使用CLIP等预训练多模态模型,学生模型通过对比学习对齐视觉特征和文本语义,实现开放词汇目标检测。 - **跨领域动作识别**(NVIDIA ECCV 2024):利用教师模型从第三人称视频中提取时空特征,指导学生模型在低资源的第一人称视频数据上学习[^2]。 - **损失函数设计**: $$ \mathcal{L}_{KD} = \alpha \cdot \mathcal{L}_{logits} + \beta \cdot \mathcal{L}_{embedding} + \gamma \cdot \mathcal{L}_{contrastive} $$ 其中 $\mathcal{L}_{contrastive}$ 用于对齐跨模态特征空间[^3]。 ##### 2.2 多模态联合蒸馏 - **框架示例**: ```python # 伪代码:多模态教师→单模态学生 teacher = MultiModalModel() # 教师模型(多模态输入) student = UniModalModel() # 学生模型(单模态输入) # 知识迁移过程 for x_image, x_text in dataset: t_feat = teacher(x_image, x_text) # 多模态特征融合 s_feat = student(x_image) # 单模态特征 loss = KL_divergence(s_feat, t_feat.detach()) ``` #### 3. **关键论文与代码** | 方法 | 论文 | 代码 | |------|------|------| | ViLD | [Open-vocabulary Object Detection via Vision and Language Knowledge Distillation (ICLR 2022)](https://arxiv.org/abs/2104.13921) | [官方代码](https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild) | | 跨域动作识别 | [ECCV 2024: Multimodal Cross-Domain Few-Shot Learning for Egocentric Action Recognition](https://research.nvidia.com/publication/2024-05_ECCV) | 待公开 | | 多模态蒸馏框架 | [MMDetection3D](https://github.com/open-mmlab/mmdetection3d) | 集成多模态蒸馏模块 | #### 4. **挑战与优化方向** - **模态对齐**:通过注意力机制(如跨模态transformer)实现细粒度对齐 - **动态蒸馏**:根据任务难度动态调整蒸馏强度(引用[1]提出的动态知识蒸馏方向) - **轻量化设计**:使用神经网络架构搜索(NAS)优化学生模型结构 #### 5. **快速实践建议** 1. 使用OpenMMLab系列工具(MMDetection/MMClassification)快速搭建基线 2. 在特征提取层添加KL散度损失实现logits级蒸馏 3. 对多模态数据预处理时,需统一不同模态的采样率和特征维度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值