©PaperWeekly 原创 · 作者 | Miko
本篇文章介绍一下 Stanford University 学者于 TPAMI 2022 发表的一篇关于小物体语义分割的文章。语义分割的目标是从图像中准确标识出特定类型的物体,它是众多图像/视频应用领域的基础研究。全球各大科研机构都有大量学者关注语义分割研究领域,很多先进的语义分割算法被不断的提出。但目前对于小物体的语义分割仍然是一个公认的难点,而对小物体准确的分割对于各类应用如自动驾驶、肿瘤早筛等都有至关重要的影响。
斯坦福大学 Shengtian Sang 等人提出了一种利用跨特征图注意力机制的方法提高现有语义分割模型的性能,实验表明该方法在仅增加基础模型 0.1% 参数的情况下可以提高现有语义分割模型 2%-5% 的性能,该方法对于语义分割研究领域有重要的意义。
论文标题:
Small-Object Sensitive Segmentation Using Across Feature Map Attention
论文链接:
https://ieeexplore.ieee.org/document/9906428
研究背景
由于卷积和池化操作导致的信息损失,目前基于卷积神经网络的方法对于小/薄物体的分割仍然具有挑战性。该文提出了一种交叉特征图注意力(AFMA)的方法来解决这一问题。它通过利用原始图像的不同层级特征来量化属于同一类别的小物体和大物体之间的内在关系,AFMA 可以弥补小物体的深层特征信息损失并提高模型对小物体分割的性能。该方法可以广泛的用于现有分割模型架构,并能产生比现有方法更多的可解释的特征表示。
本工作的贡献可以概括为以下几点:
1. 引入了交叉特征图注意力机制,有效地提高了模型对