论文框架梳理-基于注意力机制优化小目标算法性能(学习笔记)

个人博客地址:论文框架梳理(一)——基于注意力机制优化小目标算法性能

前言

  • 为什么要梳理论文架构?
    在进行期刊论文手稿撰写前,感觉无从下手,因此,打算分析借鉴一些高分文章的结构。逐步构建自己的论文框架。
  • 怎么梳理论文结构(计算机视觉领域)?
    一篇研究论文的写作通常围绕创新点展开。在提出创新点后,通过一系列图表来论证自己的创新点。因此,以图表为切入点对一篇文章进行分析或许是一个不错的选择。

选取论文模板

  • 确定论文的Aims and scope。
    筛选目标期刊
  • 从目标期刊中筛选出与自己论文主题相近的论文。
  • 分析论文结构,选取较为合适的论文作为自己论文写作的论文模板

论文结构梳理(e.g.)

论文:《Small-Object Sensitive Segmentation Using Across Feature Map Attention》。

  • 需求:由于卷积池化导致的小目标特征丢失,是的小目标检测分割困难
  • 创新点:提出了一种跨特征图注意力(AFMA)弥补小目标特征丢失。
  • 方法:在八种计算机视觉算法框架中插入该注意力机制,消融实验验证有效性。
    基于算法模块优化算法的通用论文结构归纳

图1:卷积运算实例

  • 章节:Introduction
  • Objective:可视化展示卷积造成的特征丢失现象,点出文章的研究背景,和该文章的研究动机。
    在这里插入图片描述

图2:方法概述

  • 章节:Introduction
  • Objective:介绍方法
    在这里插入图片描述

图3:方法框架

  • 章节:method
  • Objective:介绍夸特征注意力机制的实现原理和主要思想。
    在这里插入图片描述

图4:没看明白

在这里插入图片描述

表1:CamVid 测试数据集上小物体类别(左)与大物体类别(右)的比较结果

  • 章节:experiment
  • Objective:在CamVid 数据集下,对比不同框架在插入 AFMA 注意力机制前后的表现
  • 意义:采用method部分的方法得到的结果数据,用来验证本文方法的有效性(跨特征注意力机制对小目标检测性能的提升)
    在这里插入图片描述

表2:Cityscapes测试数据集上小物体类别的比较结果

  • 章节:experiment
  • Objective:在Cityscapes 数据集下,对比不同框架在插入 AFMA 注意力机制前后的表现
    在这里插入图片描述

图5:CamVid 测试数据集上的语义分割结果示例

  • 章节:experiment
  • Objective:在同一数据集上,可视化展示不同算法框架在添加AFMA注意力机制后,对小目标的分割性能。
    在这里插入图片描述

图6:AFMA在不同算法框架下,对不同类别的热力图可视化

  • 章节:experiment
  • Objective:在同一数据集上,可视化展示不同算法框架在添加AFMA注意力机制后,对小目标的分割性能。
    在这里插入图片描述

图7:据文章所说该图可以看出,AFMA具有从同类别大目标学习到特征,并且指导分割小目标的作用

在这里插入图片描述

表3:在同一框架不同深度下插入注意力机制,对比模型的性能表现

在这里插入图片描述

图8:不同深度特征图之间的 AFMA 图示

  • 章节:experiment
  • Objective:用来可视化不同深度的AFMA对影响
    在这里插入图片描述

图9:数据集下各个类别的不同尺寸分布图

  • 章节:experiment
  • Objective:利用该数据集,验证AFMA对小目标的效果,给下一步实验设计提供必要条件

在这里插入图片描述

图9:验证不同神经网络在插入AFMA前后,对不同大小目标检测性能的提升效果

  • 章节:experiment
  • Objective:根据数据集大小分布,设计实验

在这里插入图片描述

图10:负面案例说明

  • 章节:experiment
  • 实验设计:按检测类别分组,每组采用两个神经网络,对比注意力机制插入前后对分割效果的影响。
  • Objective:展示假阴性分割样本
  • 作图内容方法:用两个神经网络对不同类别分割效果的可视化,并且可视化展示假阴性分割结果
    在这里插入图片描述

图10:负面案例说明

  • 章节:experiment
  • Objective:展示假阳性分割样本
  • 作图内容方法:同上
    在这里插入图片描述

表5:模型参数量分析

  • 章节:experiment
  • 实验设计:分析不同神经网络模型,在添加注意力机制后的参数量变化
  • Objective:
  • 作图内容方法:
    在这里插入图片描述

图12:训练收敛图

  • 章节:experiment
  • Objective:
  • 作图内容方法:

方法论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值