个人博客地址:论文框架梳理(一)——基于注意力机制优化小目标算法性能
前言
- 为什么要梳理论文架构?
在进行期刊论文手稿撰写前,感觉无从下手,因此,打算分析借鉴一些高分文章的结构。逐步构建自己的论文框架。 - 怎么梳理论文结构(计算机视觉领域)?
一篇研究论文的写作通常围绕创新点展开。在提出创新点后,通过一系列图表来论证自己的创新点。因此,以图表为切入点对一篇文章进行分析或许是一个不错的选择。
选取论文模板
- 确定论文的Aims and scope。
筛选目标期刊 - 从目标期刊中筛选出与自己论文主题相近的论文。
- 分析论文结构,选取较为合适的论文作为自己论文写作的论文模板
论文结构梳理(e.g.)
论文:《Small-Object Sensitive Segmentation Using Across Feature Map Attention》。
- 需求:由于卷积池化导致的小目标特征丢失,是的小目标检测分割困难
- 创新点:提出了一种跨特征图注意力(AFMA)弥补小目标特征丢失。
- 方法:在八种计算机视觉算法框架中插入该注意力机制,消融实验验证有效性。
图1:卷积运算实例
- 章节:Introduction
- Objective:可视化展示卷积造成的特征丢失现象,点出文章的研究背景,和该文章的研究动机。
图2:方法概述
- 章节:Introduction
- Objective:介绍方法
图3:方法框架
- 章节:method
- Objective:介绍夸特征注意力机制的实现原理和主要思想。
图4:没看明白
表1:CamVid 测试数据集上小物体类别(左)与大物体类别(右)的比较结果
- 章节:experiment
- Objective:在CamVid 数据集下,对比不同框架在插入 AFMA 注意力机制前后的表现
- 意义:采用method部分的方法得到的结果数据,用来验证本文方法的有效性(跨特征注意力机制对小目标检测性能的提升)
表2:Cityscapes测试数据集上小物体类别的比较结果
- 章节:experiment
- Objective:在Cityscapes 数据集下,对比不同框架在插入 AFMA 注意力机制前后的表现
图5:CamVid 测试数据集上的语义分割结果示例
- 章节:experiment
- Objective:在同一数据集上,可视化展示不同算法框架在添加AFMA注意力机制后,对小目标的分割性能。
图6:AFMA在不同算法框架下,对不同类别的热力图可视化
- 章节:experiment
- Objective:在同一数据集上,可视化展示不同算法框架在添加AFMA注意力机制后,对小目标的分割性能。
图7:据文章所说该图可以看出,AFMA具有从同类别大目标学习到特征,并且指导分割小目标的作用
表3:在同一框架不同深度下插入注意力机制,对比模型的性能表现
图8:不同深度特征图之间的 AFMA 图示
- 章节:experiment
- Objective:用来可视化不同深度的AFMA对影响
图9:数据集下各个类别的不同尺寸分布图
- 章节:experiment
- Objective:利用该数据集,验证AFMA对小目标的效果,给下一步实验设计提供必要条件
图9:验证不同神经网络在插入AFMA前后,对不同大小目标检测性能的提升效果
- 章节:experiment
- Objective:根据数据集大小分布,设计实验
图10:负面案例说明
- 章节:experiment
- 实验设计:按检测类别分组,每组采用两个神经网络,对比注意力机制插入前后对分割效果的影响。
- Objective:展示假阴性分割样本
- 作图内容方法:用两个神经网络对不同类别分割效果的可视化,并且可视化展示假阴性分割结果
图10:负面案例说明
- 章节:experiment
- Objective:展示假阳性分割样本
- 作图内容方法:同上
表5:模型参数量分析
- 章节:experiment
- 实验设计:分析不同神经网络模型,在添加注意力机制后的参数量变化
- Objective:
- 作图内容方法:
图12:训练收敛图
- 章节:experiment
- Objective:
- 作图内容方法: