人类偏好就是尺!SPPO对齐技术让大语言模型左右互搏、自我博弈

e1cb61a7fa05d732c2e1227bd5511f5e.gif

©作者 | 机器之心

来源 | 机器之心

Richard Sutton 在 「The Bitter Lesson」中做过这样的评价:「从70年的人工智能研究中可以得出的最重要教训是,那些利用计算的通用方法最终是最有效的,而且优势巨大。」

自我博弈(self play)就是这样一种同时利用搜索和学习从而充分利用和扩大计算规模的方法。

今年年初,加利福尼亚大学洛杉矶分校(UCLA)的顾全全教授团队提出了一种自我博弈微调方法 (Self-Play Fine-Tuning, SPIN),可不使用额外微调数据,仅靠自我博弈就能大幅提升 LLM 的能力。

最近,顾全全教授团队和卡内基梅隆大学(CMU)Yiming Yang教授团队合作开发了一种名为「自我博弈偏好优化(Self-Play Preference Optimization, SPPO)」的对齐技术,这一新方法旨在通过自我博弈的框架来优化大语言模型的行为,使其更好地符合人类的偏好。左右互搏再显神通!

45580f926ffd5a3648cdc609357a8720.png

论文标题:

Self-Play Preference Optimization for Language Model Alignment

论文链接:

https://arxiv.org/pdf/2405.00675.pdf

6c23bef7bea2ff67448d491ec0aaa02c.png

技术背景与挑战

大语言模型(LLM)正成为人工智能领域的重要推动力,凭借其出色的文本生成和理解能力在种任务中表现卓越。尽管LLM的能力令人瞩目,但要使这些模型的输出行为更符合实际应用中的需求,通常需要通过对齐(alignment)过程进行微调。

这个过程关键在于调整模型以更好地反映人类的偏好和行为准则。常见的方法包括基于人类反馈的强化学习(RLHF)或者直接偏好优化(Direct Preference Optimization,DPO)。

基于人类反馈的强化学习(RLHF)依赖于显式的维护一个奖励模型用来调整和细化大语言模型。换言之,例如,InstructGPT就是基于人类偏好数据先训练一个服从Bradley-Terry模型的奖励函数,然后使用像近似策略优化(Proximal Policy Optimization,PPO)的强化学习算法去优化大语言模型。去年,研究者们提出了直接偏好优化(Direct Preference Optimization,DPO)。

不同于RLHF维护一个显式的奖励模型,DPO算法隐含的服从Bradley-Terry模型,但可以直接用于大语言模型优化。已有工作试图通过多次迭代的使用DPO来进一步微调大模型 (图1)。

5902d3bc05354e1fdafa1d417b58522c.png

▲ 图1. 基于Bradley-Terry模型的迭代优化方法缺乏理论理解和保证

如Bradley-Terry这样的参数模型会为每个选择提供一个数值分数。这些模型虽然提供了合理的人类偏好近似,但未能完全捕获人类行为的复杂性。

这些模型往往假设不同选择之间的偏好关系是单调和传递的,而实证证据却常常显示出人类决策的非一致性和非线性,例如Tversky的研究观察到人类决策可能会受到多种因素的影响,并表现出不一致性。

04cd4cba04bc36f50fee979c76b4f9aa.png

SPPO的理论基础与方法

d6b7c12f03aca4a0ab8f2c8a20c6cdea.png

▲ 图2. 假想的两个语言模型进行常和博弈

在这些背景下,作者提出了一个新的自我博弈框架 SPPO,该框架不仅具有解决两玩家常和博弈(two-player constant-sum game)的可证明保证,而且可以扩展到大规模的高效微调大型语言模型。

具体来说,文章将RLHF问题严格定义为一个两玩家常和博弈 (图2)。该工作的目标是识别纳什均衡策略,这种策略在平均意义上始终能提供比其他任何策略更受偏好的回复。

为了近似地识别纳什均衡策略,作者采用了具有乘法权重的经典在线自适应算法作为解决两玩家博弈的高层框架算法。

在该框架的每一步内,算法可以通过自我博弈机制来近似乘法权重更新,其中在每一轮中,大语言模型都在针对上一轮的自身进行微调,通过模型生成的合成数据和偏好模型的注释来进行优化。

具体来说,大语言模型在每一轮回会针对每个提示生成若干回复;依据偏好模型的标注,算法可以估计出每个回复的胜率;算法从而可以进一步微调大语言模型的参数使得那些胜率高的回复拥有更高的出现概率(图3)。

a4e3935e277accfc9e20d7fa2ef073fc.png

▲ 图3. 自我博弈算法的目标是微调自身从而胜过上一轮的语言模型

73265a765fcc51562d6d82ee3890f29f.png

实验设计与成果

在实验中,研究团队采用了一种Mistral-7B作为基线模型,并使用了UltraFeedback数据集的60,000个提示(prompt)进行无监督训练。他们发现,通过自我博弈的方式,模型能够显著提高在多个评估平台上的表现,例如AlpacaEval 2.0和MT-Bench。这些平台广泛用于评估模型生成文本的质量和相关性。

通过SPPO方法,模型不仅在生成文本的流畅性准确性上得到了改进,更重要的是:「它在符合人类价值和偏好方面表现得更加出色」。

fe7d59ad2a892365a4426bf29ffd8838.png

▲ 图4. SPPO模型在AlpacaEval 2.0上的效果提升显著,且高于如 Iterative DPO 的其他基准方法。

在AlpacaEval 2.0的测试中(图4),经过SPPO优化的模型在长度控制胜率方面从基线模型的17.11%提升到了28.53%,显示了其对人类偏好理解的显著提高。经过三轮SPPO优化的模型在AlpacaEval2.0上显著优于多轮迭代的DPO, IPO和自我奖励的语言模型(Self-Rewarding LM)。

此外,该模型在MT-Bench上的表现也超过了传统通过人类反馈调优的模型。这证明了SPPO在自动调整模型行为以适应复杂任务方面的有效性。

acb10c0f7bb2ee5506d42845651dede5.png

结论与未来展望

自我博弈偏好优化(SPPO)为大语言模型提供了一个全新的优化路径,不仅提高了模型的生成质量,更重要的是提高了模型与人类偏好的对齐度。

随着技术的不断发展和优化,预计SPPO及其衍生技术将在人工智能的可持续发展和社会应用中发挥更大的作用,为构建更加智能和负责任的AI系统铺平道路。

更多阅读

01cba18b54ba192835408e66a61159df.png

b62d493f87f82ddb6504834d572454fe.png

4005807d24b010eacaab8e818799b3ac.png

da4afb16de41d8903235fa29a4e7a53e.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

dff52d90f1022ee7c07582f7d85c4358.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

c7c8cd9cb91fa05916e0bd7c94fc24ba.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值