©PaperWeekly 原创 · 作者 | 黄新磊
单位 | 大湾区大学信息科学与技术学院
研究方向 | 空间多组学,图学习
本文提出了一个新的空间多组学解析框架,PRAGA,通过构建动态图结构和基于贝叶斯高斯混合模型的动态原型对比学习,实现在无人工标注和测序点类型数量先验的场景下对空间多模态组学数据的综合编码解析,并在五个空间多组学数据集上展现出最优的定性和定量结果。
论文题目:
PRAGA: Prototype-aware Graph Adaptive Aggregation for Spatial Multi-modal Omics Analysis
论文链接:
https://arxiv.org/abs/2409.12728
代码链接:
https://github.com/Xubin-s-Lab/PRAGA
论文录用:
The 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025)
引言
空间分辨转录组学被《Nature》杂志评为 “Method of the Year”。这一技术将单细胞基因表达水平与其空间位置相结合,从而揭示不同细胞类型在复杂组织中的空间异质性。
最近,研究人员将视角进一步扩展到空间多模态组学,旨在综合考虑不同层次的组学信息,全面解析基因调控与微环境之间的关系,并结合空间信息深入理解复杂组织。
空间多模态组学面临的一个主要挑战是如何将不同模态的组学特征与相应的空间信息有效地编码到一个统一的潜在空间中。目前,已有方法主要通过构建 K 近邻(KNN)图来建模测序点之间的特征与空间位置的相关性,并通过图神经网络(GNN)生成一致的综合表示。
然而,这样构建的模型仍存在一些不可忽视的问题。从技术角度来说,当前的单细胞测序技术不可避免地引入了由生物学变异及其他不可控因素造成的扰动,这些扰动可能会掩盖一些关键的语义关系,导致