上海交大提出多模态框架「EmotionMeter」,更精准地识别人类情绪

本文提出了一种名为 EmotionMeter 的多模态框架,利用6个EEG电极和眼动追踪眼镜来更精确地识别人类情绪。通过结合内部大脑活动和外部行为,该框架在情绪识别中展现出优越性能,尤其在融合 EEG 信号和眼动数据后,识别准确率提升至85.11%。研究还展示了 EEG 和眼动数据的互补特性,增强了系统的稳定性和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

640

640?


在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。


在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。


点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。

这是 PaperDaily 的第 79 篇文章

本期推荐的论文笔记来自 PaperWeekly 社区用户 @Cratial为了结合用户的内部大脑活动和外部潜意识行为,本文提出了使用 6 个 EEG 电极和眼动追踪眼镜来识别人类情绪的多模态框架 EmotionMeter

如果你对本文工作感兴趣,点击底部阅读原文即可查看原论文。

关于作者:吴仕超,东北大学硕士生,研究方向为脑机接口、驾驶疲劳检测和机器学习。

■ 论文 | EmotionMeter: A Multimodal Framework for Recognizing Human Emotions

■ 链接 | https://www.paperweekly.site/papers/2000

■ 作者 | Wei-Long Zheng / Wei Liu / Yifei Lu / Bao-Liang Lu / Andrzej Cichocki


引出主题


不同模态方法描述了情绪的不同方面,并且包含互补信息。以融合技术将这些信息结合起来可以构建鲁棒性更强的情绪识别模型。


目前,大多数的研究都集中在听觉和视觉模态相结合的多模式情绪识别上,然而,来自中枢神经系统,例如 EEG 信号和外部行为,例如眼球运动的多模态结合已被证明是对情绪识别更加有效的方法。


为了结合用户的内部大脑活动和外部潜意识行为,本文提出了使用 6 个 EEG 电极和眼动追踪眼镜来识别人类情绪的多模态框架 EmotionMeter。本文提出的情绪识别系统的框架如图 1 所示。


640

 图1


本文工作:本文设计了一种包含 6 个对称颞叶电极的电极放置方式,可以很容易地嵌入到耳机或眼镜框架中。为验证本文算法的有效性,设计了四种情绪(高兴、悲伤、恐惧和中性)的识别实验。


本文揭示了 EEG 信号和眼动信息对于情绪识别的互补特性,并通过使用多模态深度神经网络改善了系统的识别性能。本文运用来自不同实验阶段的训练和测试数据集研究了本文方法的稳定性,并证明了在多次实验内和实验之间的稳定性。


实验设计


在我们的材料库中,共有 168 个包含四种情绪的电影片段,44 位被试(22 位女性,均为大学生)被要求在观看电影片段时评估他们的情绪状态(在 valence 和 arousal 两个维度下进行评分(-5~5))。

### 多模态融合的技术方向与研究领域 多模态数据融合是指将来自多种传感器或不同形式的数据源(如图像、音频、文本等)结合起来,形成全面的信息表示。这种方法能够显著提升机器学习模型的理解能力和决策水平[^1]。 #### 一、主要技术方向 1. **跨模态特征提取** 跨模态特征提取旨在设计统一的特征空间,使得不同类型的输入可以被映射到相同的向量表示中。例如,在视觉和语言任务中,可以通过预训练的方法构建共享嵌入矩阵来实现这一目标。 2. **注意力机制的应用** 注意力机制允许网络动态调整各模态的重要性权重,从而好地捕捉重要信息并抑制噪声干扰。这种策略已被广泛应用于视频分类、情感分析等领域中的多模态处理场景下。 3. **生成对抗网络(GANs)** GAN可用于创建高质量合成样本或者完成缺失模态重建工作, 这对于增强真实世界条件下稀疏标注情况下的泛化性能尤为重要. 4. **迁移学习方法论扩展至多模式环境** 当前很多成功的单域适应算法也可以推广用于解决异构数据库之间差异问题; 同时探索如何利用少量标记实例快速适配新类别成为热点课题之一. #### 二、典型应用场景 - **医疗健康诊断辅助系统**: 结合X光片影像资料以及病患口述症状描述共同判断病情. - **自动驾驶汽车感知模块开发**: 整合摄像头拍摄画面加上雷达探测距离数值综合评估周围障碍物状态变化趋势预测潜在风险因素. - **社交媒体舆情监控平台建设**: 对帖子文字内容连同附带图片一起做情绪倾向识别进而挖掘公众态度转变规律特点. ```python import torch.nn as nn class MultiModalFusionModel(nn.Module): def __init__(self): super(MultiModalFusionModel, self).__init__() # Define separate encoders for each modality here... def forward(self, modalities_data): fused_representation = None # Implement fusion logic using attention mechanisms or other techniques... return fused_representation ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值