多模态大模型技术演进及研究框架

本文探讨了多模态预训练模型的发展,从Transformer的出现到ViT模型打通CV与NLP的壁垒,再到BEiT和GPT-4等大模型的进展。多模态模型如CLIP、DALL·E2和KOSMOS-1展示了在图文理解和生成等方面的强大能力。未来趋势指向更大、更多模态的模型,以及模型训练加速和引入外部知识。多模态技术将在智能家居、机器人等领域发挥关键作用,助力AI迈向通用智能。
摘要由CSDN通过智能技术生成

一、多模态预训练概述

多模态表示包含两个或两个以上事物表现形式

模态是事物的一种表现形式,多模态通常包含两个或者两个以上的模态形式,是从多个视角出发对事物进行描述。生活中常见多 模态表示,例如传感器的数据不仅仅包含文字、图像,还可以包括与之匹配的温度、深度信息等。使用多模态数据能够使得事物呈现更加立体、全面,多模态研究成为当前研究重要方面,在情感分析、机器翻译、自然语言处理 和生物医药前沿方向取得重大突破。

Transformer颠覆传统模型,但限于单模态领域

2017年Transformer被提出,颠覆了传统的深度学习模型,在机器翻译任务上实现了最好性能。Transformer在大规模语料库上进 行自监督预训练,然后在下游任务进行微调受到人们的关注,许多预训练大模型都是遵守这一范式提出,例如BERT、GPT等。 虽然基于Transformer的大模型都取得了很好的效果,但还是限于单一模态(文本)上,无法将其self-atten

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值