本文是LLM系列的文章,针对《Large Language Models and Knowledge Graphs:
Opportunities and Challenges》的翻译。
大语言模型和知识图谱:机会与挑战
摘要
大型语言模型(LLM)已经席卷了知识表示和世界。这个拐点标志着从显式知识表示向重新关注显式知识和参数知识的混合表示的转变。在这篇立场文件中,我们将讨论社区内关于LLM(参数知识)和知识图谱(显性知识)的一些共同争论点,并推测新的关注带来的机遇和愿景,以及相关的研究主题和挑战。
1 引言
2 社区内的共同辩论点
3 机会和愿景
4 关键研究主题和相关挑战
5 前景
总之,大型语言模型(LLM)的最新进展标志着知识图谱(KG)研究的一个重要转折点。虽然关于能否结合他们的优势的重要问题仍然悬而未决,但这些问题为未来的研究提供了令人兴奋的机会。社区已经在迅速调整他们的研究重点,出现了KBC-LM研讨会和LM-KBC挑战等新颖论坛,资源大量转向知识提取、整合和使用的混合方法。我们提出以下建议:
- 1.不要随着