本文是LLM系列文章,针对《On the Convergence of Zeroth-Order Federated Tuning for Large Language Models》的翻译。
摘要
联合学习(FL)和大型语言模型(LLM)的融合正在开创一个保护隐私的自然语言处理的新时代。然而,微调LLM的密集内存需求带来了重大挑战,尤其是在计算资源有限的客户端上部署时。为了避免这种情况,我们探索了在联邦环境中集成内存高效的零阶优化的新方法,我们称之为FedMeZO。我们的研究首次在LLM的背景下检验了FedMeZO的理论基础,解决了大参数空间对优化行为的影响、收敛特性的建立以及收敛关键参数的识别等关键问题,为个性化联邦策略提供信息。我们广泛的经验证据支持了这一理论,表明FedMeZO不仅比传统的一阶方法(如FedAvg)收敛得更快,而且还将训练期间的GPU内存使用量显著降低到与推理期间相当的水平。此外,所提出的个性化FL策略建立在定制客户学习率的理论见解的基础上,可以有效地加速减少损失。我们希望我们的工作能够帮助弥合LLM联邦微调的理论和实践方面,从而促进该领域的进一步进步和研究。