On the Convergence of Zeroth-Order Federated Tuning for Large Language Models

828 篇文章

已下架不支持订阅

本文探索了FedMeZO,一种在资源有限的联邦环境中用于大型语言模型(LLM)的零阶优化方法,以解决微调时的内存挑战。FedMeZO在保持较低GPU内存使用的同时实现快速收敛,优于一阶方法,并通过个性化学习率策略加速损失减少。研究提供了理论基础和实践经验,推动了LLM联邦学习的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《On the Convergence of Zeroth-Order Federated Tuning for Large Language Models》的翻译。

关于大型语言模型的零阶联合调优的收敛性

摘要

联合学习(FL)和大型语言模型(LLM)的融合正在开创一个保护隐私的自然语言处理的新时代。然而,微调LLM的密集内存需求带来了重大挑战,尤其是在计算资源有限的客户端上部署时。为了避免这种情况,我们探索了在联邦环境中集成内存高效的零阶优化的新方法,我们称之为FedMeZO。我们的研究首次在LLM的背景下检验了FedMeZO的理论基础,解决了大参数空间对优化行为的影响、收敛特性的建立以及收敛关键参数的识别等关键问题,为个性化联邦策略提供信息。我们广泛的经验证据支持了这一理论,表明FedMeZO不仅比传统的一阶方法(如FedAvg)收敛得更快,而且还将训练期间的GPU内存使用量显著降低到与推理期间相当的水平。此外,所提出的个性化FL策略建立在定制客户学习率的理论见解的基础上,可以有效地加速减少损失。我们希望我们的工作能够帮助弥合LLM联邦微调的理论和实践方面,从而促进该领域的进一步进步和研究。

1 引言

2 前言

3 主要结果

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值