Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration

74 篇文章 10 订阅 ¥99.90 ¥299.90
大型语言模型在知识密集型任务中面临挑战,本文提出Infuser-Guided Knowledge Integration (InfuserKI)框架,有效集成新知识,减少知识遗忘,提升模型性能。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration》的翻译。

InfuserKI:通过Infuser引导的知识集成,用知识图谱增强大型语言模型

摘要

尽管大型语言模型(LLM)在不同领域都表现出了非凡的开放生成能力,但它们在知识密集型任务中举步维艰。为了缓解这一问题,已经提出了使用外部模块通过特定领域的知识图谱来增强LLM的知识集成方法。然而,它们的数据效率低下,因为它们需要已知和未知的知识来进行微调。因此,我们研究了一个新的问题,即在没有已知知识不必要重叠的情况下,将未知知识有效地集成到LLM中。注入新知识会带来遗忘先前获得的知识的风险。为了解决这一问题,我们提出了一种新的Infuser-Guided Knowledge Integration(InfuserKI)框架,该框架利用Transformer内部状态来确定是否用附加信息增强原始LLM输出,从而有效地减轻知识遗忘。对UMLS-2.5k和MetaQA领域知识图的评估表明,InfuserKI可以有效地获取新知识,并在减少知识遗忘方面分别优于最先进的基线9%和6%。

1 引言

2 相关工作

3 提出的

随着物联网系统的不断发展,机器到机器的通信变得越来越重要。MQTT作为一种轻量级的通信协议,已经被广泛应用于物联网系统中。而Python作为一种灵活且强大的编程语言,可以用来增强MQTT-based的机器到机器通信。 首先,Python提供了丰富的库和工具,可以帮助开发人员更加便捷地使用MQTT协议。通过使用Python的MQTT客户端库,开发人员可以快速地建立起MQTT连接,并且方便地进行消息的发布和订阅操作。同时,Python还提供了各种各样的扩展库,可以用来处理与MQTT相关的数据和事件。 其次,Python具有较为友好的语法和良好的可读性,这使得开发人员可以更加高效地编写和维护MQTT-based的机器到机器通信代码。同时,Python还支持异步编程,这意味着可以编写高效的并发MQTT通信程序,从而提高系统的性能和响应速度。 此外,Python还可以与各种传感器、执行器和其他物联网设备进行良好的集成。开发人员可以利用Python的丰富库和工具,将MQTT通信与物联网设备的控制和监测结合起来,从而实现更加智能和灵活的物联网系统。 综上所述,通过使用Python来增强MQTT-based的机器到机器通信,可以使物联网系统变得更加灵活、高效和功能丰富。Python为开发人员提供了丰富的工具和良好的支持,从而可以更好地应对物联网系统中的各种挑战和需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值