本文是LLM系列文章,针对《InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration》的翻译。
摘要
尽管大型语言模型(LLM)在不同领域都表现出了非凡的开放生成能力,但它们在知识密集型任务中举步维艰。为了缓解这一问题,已经提出了使用外部模块通过特定领域的知识图谱来增强LLM的知识集成方法。然而,它们的数据效率低下,因为它们需要已知和未知的知识来进行微调。因此,我们研究了一个新的问题,即在没有已知知识不必要重叠的情况下,将未知知识有效地集成到LLM中。注入新知识会带来遗忘先前获得的知识的风险。为了解决这一问题,我们提出了一种新的Infuser-Guided Knowledge Integration(InfuserKI)框架,该框架利用Transformer内部状态来确定是否用附加信息增强原始LLM输出,从而有效地减轻知识遗忘。对UMLS-2.5k和MetaQA领域知识图的评估表明,InfuserKI可以有效地获取新知识,并在减少知识遗忘方面分别优于最先进的基线9%和6%。