Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing

74 篇文章 10 订阅 ¥99.90 ¥299.90
80 篇文章 1 订阅

本文是LLM系列文章,针对《KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection》的翻译。

KnowPhish:大型语言模型满足多模式知识图,用于增强基于参考的网络钓鱼检测

摘要

网络钓鱼攻击给个人和企业带来了巨大损失,因此需要开发强大高效的自动网络钓鱼检测方法。基于参考的网络钓鱼检测器(RBPD)将目标网页上的徽标与已知的徽标集进行比较,已成为最先进的方法。然而,现有RBPD的一个主要局限性是,它们依赖于手动构建的品牌知识库,使其无法扩展到大量品牌,这导致了由于知识库的品牌覆盖率不足而导致的假阴性错误。为了解决这个问题,我们提出了一个自动化的知识收集管道,利用它我们收集了一个大规模的多模态品牌知识库KnowPhish,其中包含2万个品牌,每个品牌都有丰富的信息。KnowPhish可以用于以即插即用的方式提高现有RBPD的性能。现有RBPD的第二个限制是,它们仅依赖于图像模态,忽略了网页HTML中存在的有用文本信息。为了利用这些文本信息,我们提出了一种基于大型语言模型(LLM)的方法来从文本中提取网页的品牌信息。我们由此产生的多模态网络钓鱼检测方法KnowPhish Detector(KPD)可以检测带有或不带有徽标的网络钓鱼网页。我们在手动验证的数据集上评估了KnowPhish和KPD,

深度学习在语义道路场景的多模态融合中的探索是一项研究任务,目的是通过结合多种视觉和感知模态的信息,提升对道路场景的语义理解能力。 在这个任务中,我们使用深度学习的方法来处理不同模态的数据,如图像、激光雷达和 GPS 等。我们首先将这些模态的数据进行预处理,将其转换为神经网络可以处理的格式。然后,我们构建深度神经网络模型,用于将这些模态的信息进行融合。这种融合可以是级联式的,也可以是并行式的,即同时处理多个模态,以充分利用不同模态数据之间的相关性。 在模型的训练过程中,我们使用大量的标注数据,将不同模态数据与其对应的语义标签进行匹配。通过反向传播算法,我们可以优化模型参数,使其能够准确地预测道路场景的语义信息。 深度学习的多模态融合方法在语义道路场景中有广泛的应用。通过结合不同模态的信息,我们可以更好地理解道路场景中的障碍物、车辆、行人等不同元素。这种融合方法还可以提高对不同道路环境的适应性,使得我们的模型在城市、乡村等不同场景中都能够有效地工作。 总之,深度学习的多模态融合方法对于道路场景的语义理解具有重要意义。通过结合多种视觉和感知模态的信息,我们可以提高对道路场景的认知能力,为自动驾驶、智能交通等领域的发展提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值