Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing

本文是LLM系列文章,针对《KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection》的翻译。

KnowPhish:大型语言模型满足多模式知识图,用于增强基于参考的网络钓鱼检测

摘要

网络钓鱼攻击给个人和企业带来了巨大损失,因此需要开发强大高效的自动网络钓鱼检测方法。基于参考的网络钓鱼检测器(RBPD)将目标网页上的徽标与已知的徽标集进行比较,已成为最先进的方法。然而,现有RBPD的一个主要局限性是,它们依赖于手动构建的品牌知识库,使其无法扩展到大量品牌,这导致了由于知识库的品牌覆盖率不足而导致的假阴性错误。为了解决这个问题,我们提出了一个自动化的知识收集管道,利用它我们收集了一个大规模的多模态品牌知识库KnowPhish,其中包含2万个品牌,每个品牌都有丰富的信息。KnowPhish可以用于以即插即用的方式提高现有RBPD的性能。现有RBPD的第二个限制是,它们仅依赖于图像模态,忽略了网页HTML中存在的有用文本信息。为了利用这些文本信息,我们提出了一种基于大型语言模型(LLM)的方法来从文本中提取网页的品牌信息。我们由此产生的多模态网络钓鱼检测方法KnowPhish Detector(KPD)可以检测带有或不带有徽标的网络钓鱼网页。我们在手动验证的数据集上评估了KnowPhish和KPD,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值