本文是LLM系列文章,针对《Digital Forgetting in Large Language Models: A Survey of Unlearning Methods》的翻译。
大型语言模型中的数字遗忘:学习方法综述
1 引言
2 大型语言模型的背景
3 数字遗忘
4 LLM中的数字遗忘方法
5 LLM学习中的遗忘现象调查
6 LLMs中的遗忘评估
7 挑战和潜在的解决方案
8 结论
本文调查了LLM中关于遗忘学习的最新进展。我们首先介绍了LLMs的背景。然后,我们回顾了数字遗忘的动机、类型和要求。接下来,我们描述了LLM中数字遗忘方法使用的主要方法。之后,我们将学习方法分为四类:全局权重修改、局部权重修改、架构修改和输入/输出修改,对文献进行了调查。在描述了文献之后,我们描述了所提出的方法的评估方式:使用哪些数据集;LLM模型正在应用于该领域;用于衡量遗忘的指标和攻击;用于衡量遗忘后保留任务的指标;以及遗忘方法的运行时间。
最后但并非最不重要的一点是,我们已经确定了当前技术水平中的许多挑战。可以得出结