Digital Forgetting in Large Language Models: A Survey of Unlearning Methods

227 篇文章 7 订阅 ¥99.90 ¥299.90
9 篇文章 0 订阅

本文是LLM系列文章,针对《Digital Forgetting in Large Language Models: A Survey of Unlearning Methods》的翻译。

1 引言

2 大型语言模型的背景

3 数字遗忘

4 LLM中的数字遗忘方法

5 LLM学习中的遗忘现象调查

6 LLMs中的遗忘评估

7 挑战和潜在的解决方案

8 结论

本文调查了LLM中关于遗忘学习的最新进展。我们首先介绍了LLMs的背景。然后,我们回顾了数字遗忘的动机、类型和要求。接下来,我们描述了LLM中数字遗忘方法使用的主要方法。之后,我们将学习方法分为四类:全局权重修改、局部权重修改、架构修改和输入/输出修改,对文献进行了调查。在描述了文献之后,我们描述了所提出的方法的评估方式:使用哪些数据集;LLM模型正在应用于该领域;用于衡量遗忘的指标和攻击;用于衡量遗忘后保留任务的指标;以及遗忘方法的运行时间。
最后但并非最不重要的一点是,我们已经确定了当前技术水平中的许多挑战。可以得出结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值