Offset Unlearning for Large Language Models

本文是LLM系列文章,针对《Offset Unlearning for Large Language Models》的翻译。

大型语言模型的偏移遗忘学习

摘要

尽管大型语言模型 (LLM) 具有从其训练语料库中获取知识的强大能力,但对语料库中敏感信息的记忆(例如受版权保护、有害和私人内容)导致了道德和法律问题。为了应对这些挑战,遗忘已成为受有问题训练数据影响的 LLM 的潜在补救措施。但是,由于需要访问模型内部权重,以前的遗忘技术要么不适用于黑盒 LLM,要么通过保留敏感数据进行推理时间校正而违反了数据保护原则。我们提出了 δ-UNLEARNING,一个用于黑盒 LLM 的偏移遗忘学习框架。δUNLEARNING 不是调整黑盒 LLM 本身,而是通过对比一对较小模型的 logit 来学习遗忘所需的 logit 偏移量。实验表明,δ-UNLEARNING 可以有效地遗忘学习目标数据,同时在一般的遗忘范围任务上保持相似甚至更强的性能。δ-UNLEARNING 还有效地整合了不同的遗忘算法,使我们的方法成为一种通用的解决方案,可以将各种现有的遗忘算法适应黑盒 LLM。

1 引言

2 相关工作

3 方法

4 实验

5 分析

6 结论

在这项工作中,我们提出了 δ-UNLEARNING,这是一个适用于黑盒 LLM 的偏移遗忘学习框架,不需要访问模型的内部权重。δ-UNLEARNING 不是修改模型参数,而是学习在目标忘记集数据上引导模型行为所需的 logit 偏移量。实验表明,δ-UNLEARNING 在遗忘质量和模型

### Client Unlearning Concept Client unlearning refers to the process where a client device (such as a mobile phone, computer, or other end - user device) either removes previously learned information or eliminates the learning mechanism altogether. In machine - learning systems, clients often participate in training processes, and they store learned models, parameters, or data. Client unlearning can be used to protect user privacy, comply with regulations like the General Data Protection Regulation (GDPR) which allows users to have their data erased, or to adapt to changing requirements in the system. For example, when a user requests data deletion, the client device may need to unlearn the information related to that user. ### Application Scenarios - **Privacy Protection**: In scenarios where user data is sensitive, such as in healthcare or finance applications. If a user decides to stop using a health - tracking app, the app's client on the user's device should unlearn all the user - specific health data to prevent any potential data leakage. - **Regulatory Compliance**: As mentioned before, with regulations like GDPR, companies need to ensure that they can facilitate client unlearning when users request data removal. This is crucial for avoiding legal issues. - **Model Adaptation**: When a machine - learning model needs to be updated or replaced on the client - side. For instance, in a mobile app that uses an image - recognition model, if a new and improved model is available, the old model on the client device can be unlearned to make space for the new one. ### Related Technologies - **Data Erasure Algorithms**: These algorithms are designed to securely remove data from the client device. For example, techniques like overwriting data multiple times with random values can be used to ensure that the original data cannot be recovered. - **Model Pruning**: In the context of machine - learning models on the client, model pruning can be used to remove unnecessary parts of a learned model. This can be considered a form of unlearning as it reduces the model's complexity and the amount of stored information. For example, in neural networks, pruning can remove less important neurons or connections. ```python # Simple example of model pruning in a neural network (pseudo - code) import torch import torch.nn as nn # Define a simple neural network class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc1 = nn.Linear(10, 20) self.fc2 = nn.Linear(20, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x model = SimpleNet() # Prune the first fully - connected layer parameters_to_prune = ( (model.fc1, 'weight'), ) import torch.nn.utils.prune as prune prune.l1_unstructured(parameters_to_prune[0][0], name=parameters_to_prune[0][1], amount=0.2) ``` - **Distributed Unlearning Protocols**: In distributed machine - learning systems where multiple clients are involved in training, there are protocols to ensure coordinated unlearning. For example, in federated learning, when a client needs to unlearn certain data, these protocols help in synchronizing the unlearning process across the system.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值