本文是LLM系列文章,针对《C3BENCH: A COMPREHENSIVE CLASSICAL CHINESE UNDERSTANDING BENCHMARK FOR LARGE LANGUAGE MODELS》的翻译。
摘要
中国古典理解 (CCU) 在保存和探索杰出的中国传统文化方面具有重要价值。最近,研究人员试图通过利用大型语言模型 (LLM) 非凡的理解和语义能力来利用 CCU 的潜力。但是,没有全面的基准可用于评估 LLM 的 CCU 功能。为了填补这一空白,本文介绍了 C3bench,这是一个全面的古典汉语理解基准,它由 50,000 个文本对组成,用于五个主要的 CCU 任务,包括分类、检索、命名实体识别、标点符号和翻译。此外,C3bench 中的数据来自十个不同的领域,涵盖了文言文的大部分类别。利用提出的 C3bench,我们广泛评估了 15 个代表性 LLM 在所有五个 CCU 任务上的定量性能。我们的结果不仅建立了 LLM CCU 能力的公开排行榜,而且还获得了一些发现。具体来说,现有的 LLM 正在努力完成 CCU 任务,并且仍然不如监督模型。此外,结果表明 CCU 是一项需要特别注意的任务。我们相信这项研究可以为基于 LLM 的 CCU 研究的未来发展提供标准基准、全面的基线和有价值的见解。评估流程和数据集可在