Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled LLM

本文是LLM系列文章,针对《Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models》的翻译。

通过检索增强生成助力大型语言模型,生成可解释的生物医学假设

摘要

当今可用的大量生物医学信息对寻求有效消化、处理和理解这些发现的研究人员提出了重大挑战。大型语言模型 (LLM) 已成为驾驭这一复杂且具有挑战性的数据环境的强大工具。然而,LLM可能会导致幻觉反应,这使得检索增强生成(RAG)对于获得准确信息至关重要。在此协议中,我们提出了 RUGGED(图引导可解释疾病区分下的检索),这是一个全面的工作流程,旨在支持研究人员进行知识整合和假设生成,确定经过验证的前进路径。通过文本挖掘关联分析和疾病节点的可解释图形预测模型,对出版物和知识库中的相关生物医学信息进行审查、整合和提取,预测药物和疾病之间的潜在联系。这些分析与生物医学文本一起被集成到一个框架中,该框架有助于用户主导的机制阐明以及通过支持 RAG 的LLM进行假设探索。临床用例证明 RUGGED 能够评估和推荐致心律失常性心肌病 (ACM) 和扩张型心肌病 (DCM) 的治疗方法,分析处方药物的分子相互作用和未探索的用途。该平台最大限度地减少了LLM的幻觉,提供了可行的见解,并改进了新型疗法的研究。

引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值