Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled LLM

本文是LLM系列文章,针对《Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models》的翻译。

通过检索增强生成助力大型语言模型,生成可解释的生物医学假设

摘要

当今可用的大量生物医学信息对寻求有效消化、处理和理解这些发现的研究人员提出了重大挑战。大型语言模型 (LLM) 已成为驾驭这一复杂且具有挑战性的数据环境的强大工具。然而,LLM可能会导致幻觉反应,这使得检索增强生成(RAG)对于获得准确信息至关重要。在此协议中,我们提出了 RUGGED(图引导可解释疾病区分下的检索),这是一个全面的工作流程,旨在支持研究人员进行知识整合和假设生成,确定经过验证的前进路径。通过文本挖掘关联分析和疾病节点的可解释图形预测模型,对出版物和知识库中的相关生物医学信息进行审查、整合和提取,预测药物和疾病之间的潜在联系。这些分析与生物医学文本一起被集成到一个框架中,该框架有助于用户主导的机制阐明以及通过支持 RAG 的LLM进行假设探索。临床用例证明 RUGGED 能够评估和推荐致心律失常性心肌病 (ACM) 和扩张型心肌病 (DCM) 的治疗方法,分析处方药物的分子相互作用和

### 可解释AI在乳腺MRI筛查中的癌症检测 可解释AI(Explainable AI, XAI)在乳腺MRI筛查中的癌症检测中扮演着重要角色,它不仅提高了模型的透明度,还增强了医生对AI辅助诊断的信任度。以下是关于这一主题的详细分析: #### 1. 可解释AI的定义与作用 可解释AI是指能够提供其决策过程清晰解释的机器学习模型。在乳腺MRI筛查中,可解释AI的主要作用是帮助医生理解模型如何做出癌症检测的判断。这种透明性对于提高模型的可接受性和可靠性至关重要[^1]。 #### 2. 可解释AI在乳腺MRI筛查中的应用 在乳腺MRI筛查中,可解释AI可以通过可视化技术展示模型关注的区域,帮助医生识别潜在的肿瘤位置。例如,热图(Heatmap)可以显示模型在图像中关注的关键区域,从而提供额外的诊断线索。此外,可解释AI还可以通过特征重要性分析来展示哪些影像特征对模型的决策影响最大[^1]。 #### 3. 可解释AI的优势 - **增强信任**:通过提供模型决策的可视化解释,医生可以更好地理解AI的判断依据,从而增强对AI辅助诊断的信任。 - **辅助诊断**:可解释AI可以帮助医生发现可能被忽略的病变区域,提高诊断的准确性。 - **教育与培训**:可解释AI可以作为教育工具,帮助医生理解AI模型的工作原理,提升他们的诊断技能。 #### 4. 挑战与限制 尽管可解释AI在乳腺MRI筛查中有诸多优势,但也面临一些挑战: - **技术复杂性**:开发高效的可解释AI模型需要复杂的算法和技术支持。 - **临床验证**:可解释AI模型需要经过严格的临床验证,以确保其在实际应用中的有效性和安全性。 - **数据隐私**:在使用患者数据进行模型训练和测试时,必须严格遵守数据隐私保护法规。 #### 5. 未来发展方向 随着深度学习技术的发展,未来的可解释AI模型将更加注重模型的透明性和可解释性。研究人员正在探索新的方法,如基于注意力机制的模型和因果推理方法,以进一步提高模型的可解释性。此外,跨学科合作也将成为推动可解释AI发展的关键因素,结合医学、计算机科学和伦理学等领域的知识,共同解决实际应用中的问题[^1]。 ### 代码示例 以下是一个简单的Python代码示例,展示了如何使用热图来可视化乳腺MRI图像中的关键区域: ```python import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image # 加载预训练的模型 model = load_model('breast_cancer_model.h5') # 加载并预处理图像 img_path = 'path_to_image.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = x / 255.0 # 归一化 # 获取模型的预测结果 preds = model.predict(x) print("Predicted:", preds) # 使用梯-CAM生成热图 def grad_cam(model, x, layer_name): # 获取模型的最后一个卷积层输出 conv_layer = model.get_layer(layer_name) # 获取模型的输出 output = model.output # 计算梯度 grads = K.gradients(output, conv_layer.output)[0] # 计算平均梯度 pooled_grads = K.mean(grads, axis=(0, 1, 2)) # 创建一个函数,输入图像,输出卷积层输出和平均梯度 iterate = K.function([model.input], [pooled_grads, conv_layer.output[0]]) pooled_grads_value, conv_layer_output_value = iterate([x]) # 对每个通道进行加权 for i in range(64): # 假设卷积层有64个通道 conv_layer_output_value[:, :, i] *= pooled_grads_value[i] # 生成热图 heatmap = np.mean(conv_layer_output_value, axis=-1) heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) return heatmap # 生成热图 heatmap = grad_cam(model, x, 'conv2d_1') plt.imshow(heatmap) plt.colorbar() plt.show() ``` ### 相关问题 1. 可解释AI在乳腺MRI筛查中的具体应用场景有哪些? 2. 如何评估可解释AI模型在乳腺MRI筛查中的性能? 3. 可解释AI在乳腺MRI筛查中面临哪些伦理和法律挑战? 4. 有哪些现有的可解释AI工具和框架适用于乳腺MRI筛查? 5. 可解释AI在乳腺MRI筛查中的未来发展趋势是什么?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值