Qwen2.5-VL Technical Report

本文是LLM系列文章,针对《Qwen2.5-VL Technical Report》的翻译。

Qwen2.5-VL技术报告

摘要

我们推出Qwen2.5-VL,这是Qwen视觉语言系列的最新旗舰模型,它在基础功能和创新功能方面都取得了重大进展。Qwen2.5-VL通过增强的视觉识别、精确的对象定位、强大的文档解析和长视频理解,在理解和与世界互动方面实现了重大飞跃。Qwen2.5-VL的一个突出特征是它能够使用边界框或点准确定位对象。它提供了从发票、表单和表格中提取强大的结构化数据,以及对图表、示意图和布局的详细分析。为了处理复杂的输入,Qwen2.5VL引入了动态分辨率处理和绝对时间编码,使其能够通过二级事件定位处理不同大小的图像和持续时间延长(长达数小时)的视频。这使得模型能够原生地感知空间尺度和时间动态,而不依赖于传统的归一化技术。通过从头开始训练原生动态分辨率视觉Transformer(ViT)并结合Window Attention,我们在保持原生分辨率的同时显著降低了计算开销。因此,Qwen2.5-VL不仅在静态图像和文档理解方面表现出色,而且作为一个交互式视觉代理,能够在操作计算机和移动设备等现实世界场景中进行推理、工具使用和任务执行。该模型实现了跨领域的强泛化,而不需要特定任务的微调。Qwen2.5-VL有三种尺寸可供选择,适用于从边缘AI到高性能计算的各种用例。旗舰Qwen2.5-VL-72B模型与GPT-4o和Claude 3.5 S

<think>好的,我现在需要处理用户关于Qwen2.5-VL模型的使用说明、特性和示例的查询。首先,用户提供了两个引用来源,我需要仔细分析这些内容以提取关键信息。 首先,引用[1]提到Qwen2.5-VL-72B-Instruct在多个基准测试中表现优异,特别是在文档理解、图表分析和视觉代理方面。引用[2]则详细说明了模型的不同尺寸(3B、7B、72B),以及如何用OpenVINO进行本地加速。用户需要的是使用说明、特性和示例,我需要将这些信息结构化。 接下来,我需要确保回答符合系统级指令,比如数学公式的正确格式和引用标识的位置。不过,当前问题不涉及数学公式,但可能需要代码示例或模型参数设置。用户希望结构清晰,分步骤说明,同时保持真实可靠。 然后,考虑用户可能的深层需求:他们可能想了解如何部署模型,模型的具体优势,以及实际应用案例。需要涵盖模型特性如多模态能力、空间时间感知、工具使用等,使用说明包括环境配置、推理方法、工具调用,以及示例部分的应用场景。 另外,用户提供的引用中提到OpenVINO的使用,这部分需要详细说明步骤,可能涉及安装命令和代码片段。特性部分要突出模型的不同尺寸及其性能比较,比如3B模型在端侧的优势。示例部分需要具体场景,如文档理解、视觉代理任务,并附上代码示例。 需要检查是否存在遗漏的信息,比如模型的开源平台(Hugging Face和ModelScope),以及不同版本间的改进,如Qwen2.5-VL相比之前版本的提升。同时,要确保每个引用在适当的地方标注,例如在性能优势或部署方法部分添加[^1]和[^2]。 最后,组织内容,确保结构清晰:先概述模型,再分特性、使用说明、示例,最后相关问题。保持语言简洁,技术细节准确,并自然融入引用标注。</think># Qwen2.5-VL 模型使用说明与特性解析 ## 一、模型特性 1. **多模态能力增强** - 支持图像实际尺寸表示的检测框/坐标,提升空间维度感知能力 - 动态图像尺寸转换技术,可将不同分辨率图像转换为自适应长度token - 新增时间维度理解能力,支持视频内容分析 2. **视觉代理功能** - 无需特定任务微调即可执行视觉代理任务 - 具备操作电脑/手机等设备的能力(如屏幕点击、滑动等) - 支持动态工具调用,实现复杂任务的自动化处理 3. **性能优势** - Qwen2.5-VL-7B-Instruct 在多项任务超越GPT-4o-mini - Qwen2.5-VL-3B 超越前代Qwen2-VL-7B,具备端侧部署潜力 - 72B版本在高校级问题、数学推理等复杂场景表现突出 ## 二、使用说明 ### 环境配置 ```bash # 通过Hugging Face或ModelScope获取模型 git clone https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct # 安装OpenVINO加速工具 pip install openvino openvino-dev ``` ### 基础推理 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") # 多模态输入处理 inputs = tokenizer([("请描述这张图片", "image.jpg")], return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0])) ``` ### 工具调用示例 ```python # 视觉代理操作演示 agent_prompt = """请打开浏览器访问arxiv.org,搜索最新CVPR论文""" response = model.generate(agent_prompt) # 输出将包含可执行的浏览器操作指令序列[^2] ``` ## 三、应用示例 1. **文档理解** - 输入科研论文扫描件,自动生成摘要 - 解析财务报表中的图表数据 2. **工业检测** ```python # 产线缺陷检测 detection_prompt = "分析这张X光片中的焊接缺陷" defects = model.generate(detection_prompt, image=product_image) ``` 3. **教育辅助** - 手写数学公式识别与解题步骤生成 - 物理实验视频的动作规范性分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值