SELF SPECULATIVE DECODING FOR DIFFUSION LARGE LANGUAGE MODELS

在这里插入图片描述

一、论文主要内容总结

论文围绕扩散型大语言模型(dLLMs)的推理效率问题展开,核心是提出“自推测解码(SSD)”框架,在不损失生成质量的前提下提升推理速度,具体内容可分为三部分:

  1. 背景与问题

    • dLLMs作为自回归模型(ARMs)的替代方案,虽有双向注意力、并行生成等优势,但现有并行解码方法会偏离逐步解码过程,导致性能下降,且传统推测解码需额外辅助模型,存在冗余和内存开销。
    • dLLMs因双向注意力机制,难以直接应用ARMs的KV缓存策略,虽有自适应缓存框架将其从计算密集型转为内存密集型,但仍需更高效的解码方法。
  2. SSD框架设计

    • 自生成机制:让dLLM自身同时为多个位置生成候选 tokens,并输出置信度分数,无需额外草稿模型。
    • 分层验证树:基于生成的候选 tokens 构建分层验证树,父节点验证通过后才验证子节点,确保符合逐步解码逻辑。
    • 批量验证:在单次前向传播中批量验证验证树的所有节点,最多可在一次迭代中接受N+1个tokens(N为草稿长度),减少解码步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值