Deepseek对数据分析行业的冲击有多大?

今年Deepseek等AI工具大火,很多职场人担心AI的发展会导致数据分析师被淘汰。那么这类AI工具对数据分析工作最大的冲击是什么?数据分析师哪部分能力是deepseek取代不了的?

01

AI让数据分析的门槛降低

许多职场人担心DeepSeek这样的AI工具会导致数据分析师被淘汰,但实际上,这类工具对数据分析师的冲击有限。我们可以用自动挡汽车和自动驾驶功能来类比:自动挡帮助司机完成基础操作,而自动驾驶承担了一部分驾驶任务,可以替你停车,在高速公路上启动自动驾驶,可以看文件,但是在山路或者路况不好的情况,还是需要人来驾驶,自动驾驶和自动档都未完全取代司机。

同样,AI工具如DeepSeek可以帮助数据分析师完成基础操作,比如处理表格数据、编写建模代码、进行数据清洗等,这些工作真的是最烦人最枯燥的。

02

AI时代,数据分析人才的能力要求?

随着人工智能时代的到来,未来3-5年,企业对数据分析师的核心要求将发生显著变化。数据分析师需要具备更广的数据思维和业务思维,因为这些是AI无法替代的能力。同时,AI降低了数据分析行业的入门门槛,即使不熟悉基本操作和代码,也可以借助AI完成任务。AI工具使得数据分析,尤其是算法建模的门槛变低。同时使得数据分析的上限变高。AI无法胜任的部分包括理解业务需求、判断分析结果是否符合业务目标,以及将分析结果转化为实际业务决策,这些能力需要数据分析师具备深刻的业务洞察力和批判性思维。

举个例子,最近有家机构对用户情绪的分析,采用的方法是大家想都想不到的,就是对表情包进行分析,现在大家用表情包非常多,所以表情包传达出的情绪也是用户情绪的重要部分。在AI出来之前,很难想象可以做这个工作,现在就可以做了。

另外,如果我们自己不会数据分析,那么我们连给AI提需求都做不到。因此,AI工具是数据分析师的辅助手段,而非替代品。如果数据分析师完全依赖AI而缺乏自身能力,将难以胜任工作。

03

数据分析人才如何提升职场竞争力?

很多数据分析师的技术能力很强,但是对上游和下游的业务都不熟悉,“分析专项能力强,业务结合能力弱”,所以数据分析师一定要提升业务分析能力,另外就是对上下游的业务链条足够了解,在业务诊断提出建议的时候,更有针对性。

最近收到了CDA数据分析师一级、二级教材的最新版的教材样章,还没下印厂的版本,对比发现,新教材主要关注数据行业在业务和技术层面的快速迭代。CDA数据分析师的新教材更新重点聚焦两方面:

第一、强化机器无法替代的人类业务思维与数据思维

一级教材引入业务分析框架流程及模块思维,主要参考了咨询公司使用的流程管理的方法,如问题拆解、指标关联等。

这很大程度上解决了数据分析师业务技能很过硬,但对上下游业务不了解的困境;增加了标签体系和用户画像,压缩了统计学和数据库内容,优化了分析图表和报告的内容,AI能解决的部分就不需要深入学习了。学过了一级教材,几乎就可以掌握以下重要的技能。

二级教材整合企业级数据项目工作流,主要针对学员掌握模型调优却不懂数据分析在业务中的介入时机,比如在企业开发产品时,如何从规划阶段探索客户需求,到产品上线后评估效果。新版内容引入咨询公司及大厂项目方法,重点呈现业务全流程。

例如产品研发链条中数据分析何时介入、如何关联下游任务(如需求对齐、结果落地),确保不仅懂技术,更清楚数据分析在业务前因后果中的实际作用,弥合技术与业务断层。

第二、纳入当前行业关注的前沿技术方法,确保知识体系与行业发展同步。

代码类知识动态更新:基础操作保留纸质版,前沿技术通过电子资料实时同步,扫码即可获取最新内容,避免因语法接口迭代而过时。

强化AI分析结果评估:新增模型评估、代码验证及分析结果校验方法,例如运行测试人工智能生成的代码以确保可靠性。

第三、拓展广度与深度

在广度上:覆盖更多行业案例,突破旧版有限行业范围。在深度上:细化技术细节,例如模型调优中的最优参数调整、跨数据库通用查询语法,旧版仅针对MySQL,新版扩展至SQL Server等主流数据库,并强化模型合理性检验等实战内容。

总的来说,CDA数据分析师的一级和二级教材的优化,确实考虑到职场人最需要提升的能力,另外,CDA认证小程序有很多模拟题,如果你想测试一下自己的数据分析能力,可以扫码CDA认证小程序,开始测试。

### DeepSeek 对银行信息技术行业的影响 #### 提升客户服务效率与质量 某银行引入了 DeepSeek 的智能客服系统后,显著减少了人力成本并提升了服务响应速度和服务质量。通过自动化的客户咨询解答流程,能够快速处理量重复性的查询请求,使得客户的等待时间缩短[^1]。 #### 实现智能化风险评估 利用 DeepSeek 规模预训练模型的强自然语言理解能力和逻辑推理能力,在信贷审批过程中可以更精准地分析借款人的信用状况以及还款意愿等信息。这有助于金融机构制定更加合理的贷款策略,降低违约率带来的损失风险。 #### 支持复杂业务场景下的决策优化 对于涉及个变量因素考量的投资组合管理或是金融市场交易活动而言,DeepSeek 可以为专业人士提供基于海量数据挖掘出来的洞察力,帮助其做出更为科学有效的投资判断;同时也能应用于反洗钱监控等领域,及时发现异常资金流动情况并采取相应措施加以防范控制[^3]。 ```python def analyze_customer_risk(profile_data, transaction_records): """ 使用DeepSeek进行客户风险分析 参数: profile_data (dict): 客户基本信息字典 transaction_records (list of dict): 交易记录列表 返回: float: 风险评分值 """ import deepseek_reasoner as dr reasoning_chain = f""" Given the customer's {profile_data} and recent transactions {transaction_records}, we will evaluate their creditworthiness by considering factors such as income stability, debt level, payment history etc. Based on these considerations... """ risk_score = dr.evaluate(reasoning_chain) return risk_score ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值