今年Deepseek等AI工具大火,很多职场人担心AI的发展会导致数据分析师被淘汰。那么这类AI工具对数据分析工作最大的冲击是什么?数据分析师哪部分能力是deepseek取代不了的?
01
AI让数据分析的门槛降低
许多职场人担心DeepSeek这样的AI工具会导致数据分析师被淘汰,但实际上,这类工具对数据分析师的冲击有限。我们可以用自动挡汽车和自动驾驶功能来类比:自动挡帮助司机完成基础操作,而自动驾驶承担了一部分驾驶任务,可以替你停车,在高速公路上启动自动驾驶,可以看文件,但是在山路或者路况不好的情况,还是需要人来驾驶,自动驾驶和自动档都未完全取代司机。
同样,AI工具如DeepSeek可以帮助数据分析师完成基础操作,比如处理表格数据、编写建模代码、进行数据清洗等,这些工作真的是最烦人最枯燥的。
02
AI时代,数据分析人才的能力要求?
随着人工智能时代的到来,未来3-5年,企业对数据分析师的核心要求将发生显著变化。数据分析师需要具备更广的数据思维和业务思维,因为这些是AI无法替代的能力。同时,AI降低了数据分析行业的入门门槛,即使不熟悉基本操作和代码,也可以借助AI完成任务。AI工具使得数据分析,尤其是算法建模的门槛变低。同时使得数据分析的上限变高。AI无法胜任的部分包括理解业务需求、判断分析结果是否符合业务目标,以及将分析结果转化为实际业务决策,这些能力需要数据分析师具备深刻的业务洞察力和批判性思维。
举个例子,最近有家机构对用户情绪的分析,采用的方法是大家想都想不到的,就是对表情包进行分析,现在大家用表情包非常多,所以表情包传达出的情绪也是用户情绪的重要部分。在AI出来之前,很难想象可以做这个工作,现在就可以做了。
另外,如果我们自己不会数据分析,那么我们连给AI提需求都做不到。因此,AI工具是数据分析师的辅助手段,而非替代品。如果数据分析师完全依赖AI而缺乏自身能力,将难以胜任工作。
03
数据分析人才如何提升职场竞争力?
很多数据分析师的技术能力很强,但是对上游和下游的业务都不熟悉,“分析专项能力强,业务结合能力弱”,所以数据分析师一定要提升业务分析能力,另外就是对上下游的业务链条足够了解,在业务诊断提出建议的时候,更有针对性。
最近收到了CDA数据分析师一级、二级教材的最新版的教材样章,还没下印厂的版本,对比发现,新教材主要关注数据行业在业务和技术层面的快速迭代。CDA数据分析师的新教材更新重点聚焦两方面:
第一、强化机器无法替代的人类业务思维与数据思维
一级教材引入业务分析框架流程及模块思维,主要参考了咨询公司使用的流程管理的方法,如问题拆解、指标关联等。
这很大程度上解决了数据分析师业务技能很过硬,但对上下游业务不了解的困境;增加了标签体系和用户画像,压缩了统计学和数据库内容,优化了分析图表和报告的内容,AI能解决的部分就不需要深入学习了。学过了一级教材,几乎就可以掌握以下重要的技能。
二级教材整合企业级数据项目工作流,主要针对学员掌握模型调优却不懂数据分析在业务中的介入时机,比如在企业开发产品时,如何从规划阶段探索客户需求,到产品上线后评估效果。新版内容引入咨询公司及大厂项目方法,重点呈现业务全流程。
例如产品研发链条中数据分析何时介入、如何关联下游任务(如需求对齐、结果落地),确保不仅懂技术,更清楚数据分析在业务前因后果中的实际作用,弥合技术与业务断层。
第二、纳入当前行业关注的前沿技术方法,确保知识体系与行业发展同步。
代码类知识动态更新:基础操作保留纸质版,前沿技术通过电子资料实时同步,扫码即可获取最新内容,避免因语法接口迭代而过时。
强化AI分析结果评估:新增模型评估、代码验证及分析结果校验方法,例如运行测试人工智能生成的代码以确保可靠性。
第三、拓展广度与深度
在广度上:覆盖更多行业案例,突破旧版有限行业范围。在深度上:细化技术细节,例如模型调优中的最优参数调整、跨数据库通用查询语法,旧版仅针对MySQL,新版扩展至SQL Server等主流数据库,并强化模型合理性检验等实战内容。
总的来说,CDA数据分析师的一级和二级教材的优化,确实考虑到职场人最需要提升的能力,另外,CDA认证小程序有很多模拟题,如果你想测试一下自己的数据分析能力,可以扫码CDA认证小程序,开始测试。