学习笔记 | 脑科学入门 | fmri 数据预处理

本文概述了脑科学研究中的预处理过程,包括时间矫正以解决扫描间的时间差问题,头动校正消除头部运动误差,空间配准统一头型,空间平滑降低噪声并增强信噪比,以及一阶处理(一般线性模型)的应用。作者分享了个人学习和实践经历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        先根据b站视频学习了一遍流程,然后师兄给了数据自己练一练手。脑科学入门好难哦!

        1、时间矫正

        原理基本上就是每一个tr扫描一遍脑瓜子,但是呢,其实是相当于把大脑切片拍照,这样的话,第一遍扫描的时候,你拍的最后一张照片和第一张照片其实就有时间差,把他俩当作同一帧的脑图显然是不合理的,所以要矫正一下,用插值法。我是按照教程一步一步来的,过程中顺便更理解了数据的构成。

        2、头动校正

        就是把人头动这个过程可能产生的误差矫正一下子。这里我问了一个可愚蠢的问题:结构像需不需要矫正?师兄说“头动校正检测的是不同帧之间大脑的相对移动”,结构像只有一帧,没法矫正,即使结构像采图过程中有可能头动,也没法矫正(摊手)

 前面忘记截图了==!     

        3、空间配准

        这部分就是要把大头、小头都配准到一个标准的头中!我用的是:功能像向结构像看齐、结构像向标准空间看齐。

        coregister 是功能像配准到结构像(选择estimate就可以,只需要输出那个数值,不需要生成新的图像);normalise 是结构像配准到标准空间。

(我的功能像配准到结构像,不知道为啥,拖动不了那个蓝色的十字标)

空间配准完成!展示的是一个标准空间还有一个是功能像生成的第一帧

4、空间平滑

两个原因:降低噪音、提高信噪比,在相邻的体素之间做空间平滑,他们的信号噪音程度是随机变化的,平滑后,噪音相互抵消,提高信噪比;平滑后,激活脑区的范围更大,大脑形状不一样,平滑后会让激活脑区重合度更高一些。

FHWM指的是空间平滑kernel大小:高斯分布最高点一半的曲线的宽度,用了默认的8       

Ta da!

5、一阶处理——被试水平的一般线性模型

赶紧去查了一下一般线性模型啥意思

好的,好像这部分不是预处理了,那我应该不用做了😀

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值