容错组合导航

文章探讨了惯性导航的局限性以及如何通过组合其他导航系统来提高精度和降低成本。重点介绍了卡尔曼滤波在集中式和分散化应用中的优缺点,强调分散化滤波在实际中的优势,以及系统重构在任务可靠性和容错性能提升中的作用。
摘要由CSDN通过智能技术生成

在初始值正确的情况下,惯性导航短期精度较高,但是其误差随着时间是累计的。如果要提高惯性导航的长期精度,就必须提高惯性器件的精度和初始读准精度,这必将大大提高成本。
如果将惯性导航与其他导航系统适当地组合起来,可以取长补短,大大提高导航精度,因此可以大大降低导航的成本。
组合导航系统还可以提高系统的任务可靠性和容错性能,因为组合导航中有余度的导航信息,如果组合适当,就可以通过余度信息检测出导航子系统的故障,将是小的子系统隔离掉,并将剩下的正常子系统重新组合(系统重构),就可以继续完成导航任务。

利用卡尔曼滤波技术对组合导航系统进行最优组合有两种途径:集中式卡尔曼滤波和分散化卡尔曼滤波。
其中,集中式卡尔曼滤波的计算量大、状态维度高,且容错性能较弱,所以一般使用分散化滤波的方法。
组合导航最优化滤波{█(集中式卡尔曼滤波@分散化卡尔曼滤波{█(动态分解@状态估计)┤ )┤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值