IMM交互式多模型滤波MATLAB实践
文章平均质量分 90
交互式多模型(IMM)适合处理目标运动模式变化的情况。本专栏的文章结合多个运动模型(匀速、匀加速、匀速转弯等)通过实时更新和加权融合各模型的状态,提高估计精度。附有大量的MATLAB完整代码和解析
余额抵扣
助学金抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
MATLAB卡尔曼
所有代码如运行有问题,可私信博主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《IMM交互式多模型滤波MATLAB实践》专栏目录,持续更新……
【逐行注释】基于CV/CT模型的IMM|MATLAB程序|源代码复制后即可运行,无需下载CV/CA双模型的IMM例程(MATLAB,基于两个模型的EKF),附源代码可直接复制粘贴。原创 2024-10-30 10:07:03 · 454 阅读 · 1 评论
-
【自适应IMM】MATLAB代码,(CA/CT模型),二维平面,状态为 6 维:[x, vx, ax, y, vy, ay],包含观测噪声自适应,带误差统计特性输出
本文提出了一种基于自适应交互多模型(IMM)算法的目标跟踪方法,结合Sage-Husa扩展卡尔曼滤波(EKF)实现噪声参数的自适应估计。算法采用CA(匀加速)和CT(匀角速度转弯)两种运动模型,在二维平面上对目标进行跟踪。通过模型概率自适应调整和噪声参数在线估计,有效提高了复杂机动目标跟踪的精度。仿真结果表明,该算法相比单一模型滤波具有更优的轨迹跟踪性能,并能准确输出各轴误差统计特性。文中提供了完整的MATLAB源代码和运行结果,包括轨迹对比图、误差分析图和概率曲线,验证了算法的有效性。原创 2025-12-04 09:13:23 · 158 阅读 · 0 评论 -
【MATLAB代码】基于UKF的交互式多模型例程,模型使用CA(匀加速)和CT(协调转弯)双模型,二维环境下的轨迹定位。附完整的MATLAB代码
轨迹真值与不同方法得到的对比:位置误差对比曲线:速度误差对比曲线:模型的概率曲线:命令行窗口输出的误差统计特性对比:完整代码如下:程序详解这段 MATLAB 程序实现了基于交互式多模型(IMM)的无迹卡尔曼滤波(UKF)方法,用于二维平面中目标的运动状态估计。该算法结合了两个运动模型:匀速直线模型(CV)和匀速转弯模型(CT),可在不同运动模式间自适应切换,从而提高目标跟踪精度。在目标跟踪问题中,由于目标可能存在不同的运动模式(如直线、转弯等),单一模型很难始终适应。IMM算法通过在多个运动模原创 2025-08-13 15:29:49 · 3067 阅读 · 0 评论 -
【MATLAB代码】自适应IMM,CV和CT两个运动模型,包含观测噪声自适应,使用Sage-Husa EKF作为滤波主体,适用于二维平面下的非合作目标的定位。附完整代码
该文介绍了一种基于自适应IMM(交互多模型)滤波算法的二维目标运动状态估计方法。该方法融合了扩展卡尔曼滤波(EKF)框架、Sage-Husa自适应噪声估计技术,采用CV(匀速)和CT(匀角速度转弯)两种运动模型进行状态估计。通过MATLAB仿真验证了算法的有效性,结果显示该方法能准确跟踪目标运动轨迹,并输出误差统计特性。核心创新点在于结合了模型概率自适应调整和噪声参数在线估计,实现了对复杂运动模式的高精度跟踪。代码实现完整,可直接运行,适用于机动目标跟踪领域的研究与应用。原创 2025-07-28 10:12:04 · 298 阅读 · 0 评论 -
【IMM&CKF】基于容积卡尔曼滤波(CKF)的多模型交互的定位程序,模型为CV和CT,三维环境,matlab代码,订阅专栏后可查看完整代码
本文提出了一种基于容积卡尔曼滤波(CKF)的三维多模型交互定位算法,集成匀速(CV)和匀角速度转弯(CT)两种运动模型,通过IMM方法提高复杂机动目标的定位精度。算法在三维空间中实现,状态变量包含位置和速度分量,观测模型采用球坐标系测量。仿真结果表明,相比单一模型CKF,IMM-CKF能有效处理机动运动,显著降低定位误差,尤其在转弯机动阶段性能提升明显。程序提供了完整的MATLAB实现,包含轨迹生成、滤波计算和性能评估模块,可直接运行并输出三维轨迹对比和误差分析结果。原创 2025-07-23 09:43:52 · 227 阅读 · 0 评论 -
【基于CKF的IMM】CV和CT两个模型下的IMM,二维,滤波使用CKF(容积卡尔曼滤波),附完整的matlab代码
该文章摘要: 本文提出了一种基于交互多模型(IMM)和容积卡尔曼滤波(CKF)的融合定位算法,用于解决目标在直线运动和转弯机动之间的模型切换问题。通过MATLAB仿真实现了IMM-CKF算法,并与单一的CV-CKF(匀速模型)和CT-CKF(匀角速转弯模型)方法进行对比。实验结果表明,在包含直线段和转弯段的复合轨迹跟踪中,IMM-CKF方法能够自适应调整模型权重,显著提高了定位精度。轨迹跟踪图、位置/速度误差对比图以及模型概率曲线直观展示了IMM算法的优势。文章提供了完整的MATLAB实现代码,可用于目标跟原创 2025-07-22 09:46:28 · 522 阅读 · 0 评论 -
【IMM&CKF】基于容积卡尔曼滤波(CKF)的多模型交互的定位程序,模型为CV和CA,matlab代码,订阅专栏后可查看完整代码
本文提出了一种基于交互多模型(IMM)和容积卡尔曼滤波(CKF)的三维机动目标跟踪算法。该算法通过融合匀速(CV)和匀加速(CA)两种运动模型,实现了对机动目标的高精度跟踪。仿真结果表明,IMM-CKF方法相比单一模型滤波器具有更好的跟踪性能,能够有效适应目标在不同运动阶段的动态变化。文中给出了完整的MATLAB实现代码,包括真实轨迹生成、观测模拟、IMM-CKF算法实现以及性能评估,通过三维轨迹图和误差曲线验证了算法的有效性。该算法特别适用于需要处理复杂机动场景的目标跟踪应用。原创 2025-07-21 09:34:30 · 263 阅读 · 0 评论 -
【MATLAB例程】三维空间内,交互式多模型(IMM),匀速转弯ct、Singer、当前统计CS三种模型滤波|附完整的代码
本文实现了一个交互式多模型(IMM)滤波算法在三维空间中的应用,结合了三种运动模型(CT、Singer和CS模型),通过MATLAB代码完成了目标轨迹仿真、滤波估计和误差分析。结果表明,IMM算法能有效融合不同模型的优势,在轨迹跟踪中表现出色。代码提供了完整的仿真流程,包括状态初始化、模型转换、滤波计算和可视化功能,可直接运行并输出3D轨迹对比图和误差曲线。订阅后可获取完整代码,快速实现多模型滤波原创 2025-06-18 10:40:18 · 319 阅读 · 0 评论 -
IMM算法的MATLAB代码,二维,CVCTCS三种模型|订阅专栏后可直接查看完整代码
本文提出了一种基于交互多模型(IMM)算法的机动目标跟踪方法,融合了匀速(CV)、匀速转弯(CT)和当前统计(CS)三种运动模型。通过MATLAB仿真验证,该方法在包含匀速、转弯和强机动的复杂轨迹上表现出色,实现了0.81米的平均跟踪精度。程序结构清晰,包含模型交互、滤波和概率更新三个核心模块。结果显示,IMM算法能够自适应切换最优模型,其中当前统计模型在强机动阶段概率显著提升(最高达85%),有效提高了跟踪鲁棒性。源代码完整可直接运行,为机动目标跟踪提供了实用解决方案。原创 2025-06-16 11:04:42 · 253 阅读 · 0 评论 -
【MATLAB例程】交互式多模型(IMM),模型使用:CV,CT左转、CT右转,二维平面,三个模型的IMM,滤波使用EKF。订阅专栏后可查看代码
IMM算法框架交互(Mixing):基于模型转移概率矩阵pij和当前模型概率,计算混合初始状态和协方差。卡尔曼滤波:对每个模型独立进行状态预测与更新,计算残差及协方差。模型概率更新:根据残差似然函数动态调整各模型权重(Model_P_up函数)。状态综合:加权融合各模型输出,得到最终估计(Model_mix函数)。运动模型CV模型(匀速):状态转移矩阵F1描述线性运动。CT1模型(左转):状态转移矩阵F2含3°/s的左转弯角速度。CT3模型(右转):状态转移矩阵F3。原创 2025-03-24 11:07:10 · 454 阅读 · 0 评论 -
【MATLAB例程】自适应IMM算法(二维CV/CA模型)代码例程,EKF,二维环境(附完整MATLAB代码,无需下载)
本文介绍了自适应交互式多模型(AIMM)算法的MATLAB实现,该算法结合匀速(CV)和匀加速(CA)运动模型,采用扩展卡尔曼滤波(EKF)和SAGE-Husa自适应方法进行目标状态估计。算法通过状态方程建模、噪声自适应调整、真实数据生成和卡尔曼滤波等步骤,实现了对目标轨迹的精确跟踪,并输出误差统计特性和可视化结果。实验结果显示,该算法能够有效处理不同运动状态的目标跟踪问题,具有较高的估计精度和稳定性。原创 2025-03-10 14:42:25 · 795 阅读 · 1 评论 -
【MATLAB例程】三维环境下的IMM(交互式多模型),使用CV和CT模型,EKF作为滤波,订阅专栏后可查看完整代码
本文所述的MATLAB代码为三维的交互式多模型(IMM)滤波器,结合了匀速直线运动(CV模型)和匀速圆周运动(CT模型)的状态估计。使用扩展卡尔曼滤波(EKF)来处理状态更新与观测数据,旨在提高对动态系统状态的估计精度。原创 2025-03-06 10:25:29 · 293 阅读 · 0 评论 -
【MATLAB例程】三维下的IMM(交互式多模型),模型使用CV(匀速)和CA(匀加速),滤波使用EKF。附完整代码
CV模型:状态包含位置、速度和零加速度(9维状态),状态转移矩阵忽略加速度项CA模型:完整包含位置、速度和加速度(9维状态),状态转移矩阵包含二次项过程噪声矩阵Q分别根据两种模型的运动特性推导。原创 2025-03-04 12:27:43 · 466 阅读 · 0 评论 -
基于IMM算法的目标跟踪,四模型IMM|三维环境|4个模型分别是:CV、左转CT、右转CT、CA(基于EKF,订阅专栏后可获得完整源代码)
这段MATLAB代码实现了基于交互多模型(IMM)算法的目标跟踪。匀速直线运动(CV)左转圆周运动(CT1)右转圆周运动(CT2)匀加速直线运动(CA)原创 2025-03-03 11:21:08 · 790 阅读 · 0 评论 -
【MATLAB例程】三维下的IMM(交互式多模型),模型使用CV(匀速)、CT(匀速转弯)和CA(匀加速),滤波使用EKF。附完整代码
H = [...];% 量测矩阵G = [...];% 控制矩阵F1 = [...];% 匀速运动的状态转移矩阵F2 = [...];% 匀加速运动的状态转移矩阵F3 = [...];% 右转弯状态转移矩阵不同模型的状态转移矩阵分别定义在这里,F1F2和F3表示不同运动模型的状态更新规律。本教程展示了如何使用MATLAB实现三维IMM算法进行目标跟踪。通过理解每个部分的实现,你可以更深入地掌握多模型跟踪方法的原理和应用。如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者。原创 2025-03-01 17:01:32 · 529 阅读 · 9 评论 -
【matlab代码,完整代码】四个模型的IMM(交互式多模型)例程,四模型分别为:CV(匀速)、CA(匀加速)、匀加加速度、CT(匀速转弯),滤波使用EKF
本 MATLAB 代码实现了交互式多模型(IMM)算法,旨在有效跟踪复杂运动目标。该算法结合了四种运动模型:匀速(CV)、匀速转向(CT)、匀加速(CA)和匀加加速(CS),通过动态切换和融合这些模型来适应不同的运动状态。该程序能够实时处理目标的变化,并提供精确的位置估计。原创 2025-02-20 15:58:20 · 608 阅读 · 0 评论 -
【MATLAB代码】CV和CA模型组成的IMM(滤波方式为UKF),可复制粘贴源代码
源代码直接粘贴到MATLAB空脚本,即可运行得到跟我一样的结果参数定义:模拟观测数据生成:主循环:结果可视化:误差统计:该代码适用于需要实时状态估计的应用,如导航系统、无人驾驶汽车、飞行器控制等。通过使用 IMM 方法,可以在不同的动态模型之间切换,提高状态估计的准确性和鲁棒性。原创 2025-01-14 15:15:10 · 414 阅读 · 0 评论 -
基于IMM算法的目标跟踪MATLAB例程(CV/CA/CT三个模型,EKF),代码可复制粘贴
该 MATLAB 代码实现了基于交互多模型 (IMM) 算法的目标跟踪,使用了三种运动模型:匀速运动 (CV)、匀加速运动 (CA) 和匀转弯运动 (CT)。通过该算法,系统能够适应目标的不同运动模式,提高跟踪精度。clc;clear;close all;% 清除命令窗口、工作空间和关闭所有图形窗口rng(0);% 设置随机数生成器的默认状态,以确保可重复性time = 100;% 仿真迭代次数T = 1;% 采样间隔(时间步长)% 模型3的转弯率(-3度)原创 2024-11-08 10:30:21 · 338 阅读 · 0 评论 -
CV/CA双模型的IMM例程(MATLAB,基于两个模型的EKF),附源代码可直接复制粘贴
该函数实现了交互式多模型 (IMM) 滤波器,结合了匀速运动 (Constant Velocity, CV) 和匀加速运动 (Constant Acceleration, CA) 模型。通过卡尔曼滤波,系统能够在不同运动模式之间切换,从而提高状态估计的准确性。该函数实现了一种交互式多模型IMM(IMM)IMM滤波器,结合了匀速运动 (Constant Velocity,CVCVCV) 和匀加速运动 (Constant Acceleration,CACACA) 模型。原创 2024-11-08 10:29:24 · 269 阅读 · 0 评论 -
【MATLAB代码】CV和CT模型组成的IMM(滤波方式为UKF),可复制粘贴源代码
CV模型:设置匀速运动的状态转移矩阵A1和输入矩阵G1,以及状态协方差矩阵Q1。CT模型:通过自定义函数CreatCTF和CreatCTT生成匀速圆周运动的状态转移矩阵和输入矩阵,并设置相应的协方差矩阵Q2。原创 2024-11-07 10:07:39 · 501 阅读 · 0 评论 -
三个CT模型的IMM,MATLAB下的代码,可复制
本代码实现了基于交互多模型(IMM)算法的目标跟踪,使用三种恒速(CT)模型来对动态目标进行状态估计。通过对目标运动状态的建模和滤波,该算法能够在不同运动模式下有效跟踪目标。本代码通过结合IMM算法与卡尔曼滤波,实现了对动态目标的有效跟踪。适用于需要在复杂环境中进行实时状态估计的应用场景,如自动驾驶、无人机导航等。通过三种模型的组合,能够提高估计的准确性和鲁棒性。原创 2024-11-01 11:06:37 · 281 阅读 · 0 评论 -
MATLAB下的四个模型的IMM例程(CV、CT左转、CT右转、CA四个模型),附源代码可复制
该MATLAB代码实现了基于交互式多模型(IMM)算法的目标跟踪,旨在估计目标在不同运动模式下的状态。代码使用四种运动模型:匀速直线运动(CV)、左转运动(CT1)、右转运动(CT2)和匀加速运动(CA)。通过生成模拟数据并应用IMM算法,代码能够有效地跟踪目标。这段代码通过IMM算法有效地跟踪目标在不同运动模式下的状态,利用卡尔曼滤波和多模型融合技术,能够在含噪声的环境中提高估计精度。通过可视化,用户可以直观地观察到目标的真实轨迹与估计轨迹之间的关系,以及模型的性能表现。原创 2024-10-30 09:56:59 · 897 阅读 · 0 评论 -
四个模型(CV、CA、左转CT、右转CT)的交互式多模型系统,介绍与MATLAB例程
CV模型用于描述连续时间系统,主要用于表示动态行为。它通过微分方程描述系统状态随时间的变化,适用于许多物理和工程应用。本文介绍了四个模型(CV、CA、左转CT、右转CT)在交互式多模型系统中的应用,并展示了如何在MATLAB中实现这一系统。通过动态选择合适的模型,可以提高系统的灵活性和适应性,满足不同的应用需求。希望本文的示例能够为进一步的研究和应用提供参考。原创 2024-10-28 10:17:22 · 1149 阅读 · 0 评论 -
【逐行注释】基于CV/CT模型的IMM|MATLAB程序|源代码复制后即可运行,无需下载,订阅专栏后可直接复制粘贴
基于EKF的多模型交互。以CV和CT两个模型进行交互,这里对代码进行逐行注释。注释较多,个人理解的时候如果有误,欢迎指正。我尽量将模型设计复杂一点,便于拿到手以后改成自己想要的形式。原创 2024-08-25 16:20:28 · 373 阅读 · 0 评论 -
关于交互式多模型(IMM)的理解
这些改进措施不仅能够增强IMM的性能和适用性, 还能使其在更复杂和动态的环境中更有效地进行状态估计。在实际应用中, 需要根据具体场景的需求和约束, 选择合适的改进方向进行优化。原创 2024-10-24 17:01:54 · 973 阅读 · 0 评论 -
【matlab代码】3个模型的IMM例程(匀速、左转、右转),附源代码(可复制粘贴)
代码概述这段代码实现了基于 IMM(Interacting Multiple Model)算法的目标跟踪。它使用三种不同的运动模型(匀速直线运动、左转弯和右转弯)来预测目标的位置,并通过卡尔曼滤波进行状态估计。初始化部分clc;clear;close all;% 清除命令窗口、工作空间和关闭所有图形窗口rng(0);% 设置随机数生成器的默认状态,以确保可重复性这部分代码清理 MATLAB 环境并设置随机数种子,确保每次运行程序的结果一致。仿真参数设置% 仿真迭代次数T = 1;原创 2024-10-25 15:40:32 · 848 阅读 · 0 评论
分享