黑塞矩阵 编辑 黑塞矩阵(Hessian Matrix),又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个 多元函数的二阶 偏导数构成的方阵,描述了函数的局部 曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。黑塞矩阵常用于 牛顿法解决优化问题。 目录 1定义 2性质 ▪ 对称性 ▪ 多元函数极值的判定 1定义编辑 对于一个实值 多元函数 ,如果函数 的二阶 偏导数都存在,则定义 的黑塞矩阵为 其中 表示对第 个变量的 微分算子, 。那么, 的黑塞矩阵即 2性质编辑 对称性 如果函数 在 区域内二阶 连续 可导,那么 黑塞矩阵 在 内为 对称矩阵。原因是:如果函数 连续,则二阶偏导数的求导顺序没有区别,即 则对于矩阵 ,有 ,所以 为对称矩阵。 多元函数极值的判定 如果实值多元函数 二阶连续可导,并且在临界点 (其中 ,并且 已知)处 梯度( 一阶导数)等于0,即 , 为 驻点。仅通过一阶导数无法判断在临界点 处是极大值还是极小值。 记 在 点处的黑塞矩阵为 。由于 在 点处连续,所以 是一个 的对称矩阵。对于 ,有如下结论: 如果H(M)是 正定矩阵,则临界点M处是一个局部的极小值。 如果H(M)是 负定矩阵,则临界点M处是一个局部的极大值。 如果H(M)是 不定矩阵,则临界点M处不是极值。