黑塞矩阵

黑塞矩阵
编辑

黑塞矩阵(Hessian Matrix),又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个 多元函数的二阶 偏导数构成的方阵,描述了函数的局部 曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。黑塞矩阵常用于 牛顿法解决优化问题。

1定义编辑

对于一个实值 多元函数
,如果函数
的二阶 偏导数都存在,则定义
的黑塞矩阵为
其中
表示对第
个变量的 微分算子
。那么,
的黑塞矩阵即

2性质编辑

对称性

如果函数
区域内二阶 连续 可导,那么
黑塞矩阵
内为 对称矩阵。原因是:如果函数
连续,则二阶偏导数的求导顺序没有区别,即
则对于矩阵
,有
,所以
为对称矩阵。

多元函数极值的判定

如果实值多元函数
二阶连续可导,并且在临界点
(其中
,并且
已知)处 梯度一阶导数)等于0,即
驻点。仅通过一阶导数无法判断在临界点
处是极大值还是极小值。
点处的黑塞矩阵为
。由于
点处连续,所以
是一个
的对称矩阵。对于
,有如下结论:
  • 如果H(M)是 正定矩阵,则临界点M处是一个局部的极小值。
  • 如果H(M)是 负定矩阵,则临界点M处是一个局部的极大值。
  • 如果H(M)是 不定矩阵,则临界点M处不是极值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值