常见矩阵运算全解析
在计算机图形学和线性代数中,矩阵运算是非常基础且重要的操作。下面将详细介绍常见的矩阵运算,包括比较、加法、缩放、乘法、向量和点的变换以及矩阵求逆等操作。
1. 比较矩阵
比较矩阵是按元素进行的操作。只有当两个矩阵的所有元素都相同时,这两个矩阵才相等。在比较时,由于涉及浮点数比较,需要使用一个误差值(epsilon)。
以下是实现矩阵相等和不相等运算符的代码:
// mat4.cpp
bool operator==(const mat4& a, const mat4& b) {
for (int i = 0; i < 16; ++i) {
if (fabsf(a.v[i] - b.v[i]) > MAT4_EPSILON) {
return false;
}
}
return true;
}
bool operator!=(const mat4& a, const mat4& b) {
return !(a == b);
}
需要注意的是, MAT4_EPSILON 常量应在 mat4.h 中定义,通常可以使用 0.000001f 作为默认值。
除了按元素比较外,还可以通过矩阵的行列式来比较矩阵的体积,行列式的计算将在后面介绍。
2. 矩阵加法
两
超级会员免费看
订阅专栏 解锁全文
1325

被折叠的 条评论
为什么被折叠?



