【矩阵论】3. 矩阵函数——常见解析函数

矩阵论的所有文章,主要内容参考北航赵迪老师的课件

[注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


在这里插入图片描述

3.1 常见泰勒解析函数

3.1.1 指数函数

在这里插入图片描述

引入参数

在这里插入图片描述

3.1.2 正弦级数

在这里插入图片描述

引入参数

在这里插入图片描述

3.1.3 余弦级数

在这里插入图片描述

引入参数

在这里插入图片描述

3.1.4 一些约定

a. A为0阵

在这里插入图片描述

b. 奇偶性

在这里插入图片描述

c. 单位阵

e t I = e t I , s i n ( t I ) = s i n ( t ) I , c o s ( t I ) = c o s ( t ) I e^{tI}=e^tI,sin(tI)=sin(t)I,cos(tI)=cos(t)I etI=etI,sin(tI)=sin(t)I,cos(tI)=cos(t)I

d. 转置穿脱

( e A ) H = e A H (e^{A})^H=e^{A^H} (eA)H=eAH

e. H阵

A H = A , 则 e i A 为 U 阵,即 ( e i A ) H = ( e i A ) − 1 , 或 ( e i A ) H e i A = I A H = − A , 则 e A 为 U 阵,即 ( e A ) H = ( e A ) − 1 , 或 ( e A ) H e A = I A^H=A,则 e^{iA}为U阵,即 (e^{iA})^H=(e^{iA})^{-1},或(e^{iA})^He^{iA}=I\\ A^H=-A,则 e^{A}为U阵,即 (e^{A})^H=(e^{A})^{-1},或(e^{A})^He^{A}=I AH=A,eiAU阵,即(eiA)H=(eiA)1,(eiA)HeiA=IAH=A,eAU阵,即(eA)H=(eA)1,(eA)HeA=I

3.2 欧拉公式

e x e^x ex c o s x cosx cosx s i n x sinx sinx 的关系

在这里插入图片描述

e i A = c o s A + i s i n A , e − A = c o s A − i s i n A , i = − 1 c o s A = 1 2 ( e i A + e − i A ) , s i n A = 1 2 i ( e i A − e − i A ) \begin{aligned} &e^{iA}=cosA+isinA,e^{-A}=cosA-isinA,i=\sqrt{-1}\\ &cosA=\frac{1}{2}(e^{iA}+e^{-iA}),sinA=\frac{1}{2i}(e^{iA-e^{-iA}}) \end{aligned} eiA=cosA+isinA,eA=cosAisinA,i=1 cosA=21(eiA+eiA),sinA=2i1(eiAeiA)

引入参数
e i t x = c o s ( t x ) + i s i n ( t x ) , e − i t x = c o s ( t x ) − i s i n ( t x ) e i t A = c o s ( t A ) + i s i n ( t A ) , e − i t A = c o s ( t A ) − i s i n ( t A ) \begin{aligned} e^{itx}=cos(tx)+isin(tx),e^{-itx}=cos(tx)-isin(tx)\\ e^{itA}=cos(tA)+isin(tA),e^{-itA}=cos(tA)-isin(tA) \end{aligned} eitx=cos(tx)+isin(tx),eitx=cos(tx)isin(tx)eitA=cos(tA)+isin(tA),eitA=cos(tA)isin(tA)

3.3 e A e^A eA

3.3.1 e A e^A eA 性质

a. 交换公式

若 A B = B A 可交换,则有交换公式 e A ⋅ e B = e A + B = e B ⋅ e A 若 A B ≠ B A ,则交换公式不成立 若AB=BA可交换,则有交换公式e^A\cdot e^B=e^{A+B} =e^B\cdot e^A\\ 若AB\neq BA,则交换公式不成立 AB=BA可交换,则有交换公式eAeB=eA+B=eBeAAB=BA,则交换公式不成立

若满足交换公式,则有
( A + B ) 2 = A 2 + 2 A B + B 2 ( A + B ) 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 \begin{aligned} &(A+B)^2=A^2+2AB+B^2\\ &(A+B)^3=A^3+3A^2B+3AB^2+B^3 \end{aligned} (A+B)2=A2+2AB+B2(A+B)3=A3+3A2B+3AB2+B3
SP
e A ⋅ e − A = e − A e A = I e^A\cdot e^{-A}=e^{-A}e^A=I eAeA=eAeA=I

在这里插入图片描述

b. 可逆公式

任一方阵A都有 e A e^A eA 可逆,且 ( e A ) − 1 = e − A (e^A)^{-1}=e^{-A} (eA)1=eA

引入参数

( e t A ) − 1 = e − t A (e^{tA})^{-1}=e^{-tA} (etA)1=etA ,且 e t A e − t A = I e^{tA}e^{-tA}=I etAetA=I

eg:证明 s i n 2 A + c o s 2 A = I sin^2A+cos^2A=I sin2A+cos2A=I
由欧拉公式 c o s A = 1 2 ( e i A + e − i A ) , s i n A = 1 2 i ( e i A − e − i A ) , c o s 2 A = 1 4 ( e 2 i A + 2 e i A − i A + e − 2 i A ) = 1 4 ( e 2 i A + 2 e 0 + e − 2 i A ) , s i n 2 A = − 1 4 ( e 2 i A − 2 e 0 + e − 2 i A ) s i n 2 A + c o s 2 A = 1 2 e 0 + 1 2 e 0 = I \begin{aligned} &由欧拉公式 cosA=\frac{1}{2}(e^{iA}+e^{-iA}),sinA=\frac{1}{2i}(e^{iA}-e^{-iA}),\\ &cos^2A=\frac{1}{4}(e^{2iA}+2e^{iA-iA}+e^{-2iA})=\frac{1}{4}(e^{2iA}+2e^0+e^{-2iA}),sin^2A=-\frac{1}{4}(e^{2iA}-2e^0+e^{-2iA})\\ &sin^2A+cos^2A=\frac{1}{2}e^0+\frac{1}{2}e^0=I \end{aligned} 由欧拉公式cosA=21(eiA+eiA),sinA=2i1(eiAeiA),cos2A=41(e2iA+2eiAiA+e2iA)=41(e2iA+2e0+e2iA),sin2A=41(e2iA2e0+e2iA)sin2A+cos2A=21e0+21e0=I

3.3.2 e A e^A eA 特根公式

设方阵A特根 λ ( A ) = { λ 1 , ⋯   , λ n } \lambda(A)=\{\lambda_1,\cdots,\lambda_n\} λ(A)={λ1,,λn} ,则 e A e^A eA 特根为 λ ( e A ) = { e λ 1 , e λ 2 , ⋯   , e λ n } \lambda(e^A)=\{e^{\lambda_1},e^{\lambda_2},\cdots,e^{\lambda_n}\} λ(eA)={eλ1,eλ2,,eλn}

3.3.3 e A e^A eA 行列式

令 n 阶方阵 A = ( a i j ) ,则 f ( A ) = e A 的行列式为: ∣ e A ∣ = ∏ e λ i = e ∑ λ i = e t r ( A ) 由行列式可知 e t r ( A ) ≠ 0 ,所以 e A 一定可逆 \begin{aligned} &令n阶方阵A=(a_{ij}),则f(A)=e^A的行列式为:\\ &\vert e^A\vert=\prod e^{\lambda_i} = e^{\sum \lambda_i}=e^{tr(A)}\\ &由行列式可知 e^{tr(A)} \neq 0,所以e^A一定可逆 \end{aligned} n阶方阵A=(aij),则f(A)=eA的行列式为:eA=eλi=eλi=etr(A)由行列式可知etr(A)=0,所以eA一定可逆

3.3.4 一些特殊矩阵 e A e^A eA 可求

a. 幂等阵

A 2 = A A^2=A A2=A ,则有 e t A = I + ( e t − 1 ) A e^{tA}=I+(e^t-1)A etA=I+(et1)A

在这里插入图片描述

第一列与第二列每个元素绝对值差1的,很有可能是幂等阵

eg

在这里插入图片描述

A 2 = ( 1 0 1 0 ) ( 1 0 1 0 ) = ( 1 0 1 0 ) = A , B 2 = ( 1 0 − 1 0 ) ( 1 0 − 1 0 ) = ( 1 0 − 1 0 ) = B 为幂等阵 可知 e t A = I + t A + ( t A ) 2 2 ! + ( t A ) 3 3 ! + ⋯ + ( t A ) n n ! = I + [ t + ( t ) 2 2 ! + ( t ) 3 3 ! + ⋯ + ( t ) n n ! ] A = I + ( e t − 1 ) A 同理,可得 e t B = I + ( e t − 1 ) B \begin{aligned} &A^2=\left( \begin{matrix} 1&0\\1&0 \end{matrix} \right)\left( \begin{matrix} 1&0\\1&0 \end{matrix} \right)=\left( \begin{matrix} 1&0\\1&0 \end{matrix} \right)=A,B^2=\left( \begin{matrix} 1&0\\-1&0 \end{matrix} \right)\left( \begin{matrix} 1&0\\-1&0 \end{matrix} \right)=\left( \begin{matrix} 1&0\\-1&0 \end{matrix} \right)=B为幂等阵\\ &可知 e^{tA}=I+tA+\frac{(tA)^2}{2!}+\frac{(tA)^3}{3!}+\cdots+\frac{(tA)^n}{n!}=I+[t+\frac{(t)^2}{2!}+\frac{(t)^3}{3!}+\cdots+\frac{(t)^n}{n!}]A\\ &=I+(e^t-1)A\\ &同理,可得e^{tB}=I+(e^t-1)B \end{aligned} A2=(1100)(1100)=(1100)=A,B2=(1100)(1100)=(1100)=B为幂等阵可知etA=I+tA+2!(tA)2+3!(tA)3++n!(tA)n=I+[t+2!(t)2+3!(t)3++n!(t)n]A=I+(et1)A同理,可得etB=I+(et1)B


在这里插入图片描述

A 2 = A , 则 e A = I + ( e t − 1 ) A = ( 1 0 0 1 ) + ( e t − 1 ) ( 2 − 2 1 − 1 ) = ( e t − 1 − 2 e t + 2 e t − 1 2 − e t ) \begin{aligned} A^2=A,则e^A=I+(e^t-1)A=\left( \begin{matrix} 1&0\\0&1 \end{matrix} \right)+(e^t-1)\left( \begin{matrix} 2&-2\\1&-1 \end{matrix} \right)=\left( \begin{matrix} e^t-1&-2e^t+2\\e^t-1&2-e^t \end{matrix} \right) \end{aligned} A2=A,eA=I+(et1)A=(1001)+(et1)(2121)=(et1et12et+22et)

b. 对角阵

对角阵 D = ( λ 1 ⋱ λ n ) D=\left(\begin{matrix}\lambda_1&&\\&\ddots&\\&&\lambda_n\end{matrix}\right) D= λ1λn ,则 f ( D ) = ( f ( λ 1 ) ⋱ f ( λ n ) ) f(D)=\left(\begin{matrix}f(\lambda_1)&&\\&\ddots&\\&&f(\lambda_n)\end{matrix}\right) f(D)= f(λ1)f(λn)

令函数 f ( x ) = e t A ( t 为参数 ) = ∑ k = 0 ∞ ( t x ) k k ! f(x)=e^{tA}(t为参数)=\sum_{k=0}\limits^\infty\frac{(tx)^k}{k!} f(x)=etA(t为参数)=k=0k!(tx)k ,则 f ( D ) = e t D = ∑ k = 0 ∞ ( t D ) k k ! f(D)=e^{tD}=\sum_{k=0}\limits^\infty\frac{(tD)^k}{k!} f(D)=etD=k=0k!(tD)k

sp
D = ( λ 1 ⋱ λ n ) ,则 e t D = ( e t λ 1 ⋱ e t λ n ) \begin{aligned} &D=\left( \begin{matrix} \lambda_1&&\\&\ddots&\\&&\lambda_n \end{matrix} \right),则e^{tD}=\left( \begin{matrix} e^{t\lambda_1}&&\\&\ddots&\\&&e^{t\lambda_n} \end{matrix} \right) \end{aligned} D= λ1λn ,则etD= etλ1etλn
eg

在这里插入图片描述

∵ A + B = ( 2 0 ) 为对角阵 ⇒ e A + B = ( e 2 e 0 ) = ( e 2 1 ) \begin{aligned} \because A+B=\left( \begin{matrix} 2&\\&0 \end{matrix} \right)为对角阵\Rightarrow e^{A+B}=\left( \begin{matrix} e^2&\\&e^0 \end{matrix} \right)=\left( \begin{matrix} e^2&\\&1 \end{matrix} \right) \end{aligned} A+B=(20)为对角阵eA+B=(e2e0)=(e21)

c. 单阵(谱公式)

A = λ 1 G 1 + ⋯ + λ k G k , 且 f ( A ) = f ( λ 1 ) G 1 + ⋯ + f ( λ k ) G k , 其中 f ( x ) = c 0 + c 1 + x + ⋯ + c k x k + ⋯ A=\lambda_1G_1+\cdots+\lambda_kG_k,且f(A)=f(\lambda_1)G_1+\cdots+f(\lambda_k)G_k,\\ 其中f(x)=c_0+c_1+x+\cdots+c_kx^k+\cdots A=λ1G1++λkGk,f(A)=f(λ1)G1++f(λk)Gk,其中f(x)=c0+c1+x++ckxk+

在这里插入图片描述

计算可得 λ ( A ) = { i , − i } , A 是单阵,对于任意解析函数 f ( x ) 有谱公式: f ( A ) = f ( i ) G 1 + f ( − i ) G 2 其中, G 1 = A − λ 2 I λ 1 − λ 2 = 1 2 i ( i 1 − 1 i ) , G 2 = A − λ 1 I λ 2 − λ 1 = − 1 2 i ( − i 1 − 1 − i ) = 1 2 i ( i − 1 1 i ) 令 f ( x ) = e t x ,则 f ( i ) = e t i , f ( − i ) = e − t i ∴ e t A = e t i G 1 + e − t i G 2 = e t i 2 i ( i 1 − 1 i ) + e − t i 2 i ( i − 1 1 i ) = ( e t i + e − t i 2 e t i − e − t i 2 i − e t i − e − t i 2 i e t i + e − t i 2 ) = ( c o s t s i n t − s i n t c o s t ) \begin{aligned} &计算可得\lambda(A)=\{i,-i\},A是单阵,对于任意解析函数f(x)有谱公式:f(A)=f(i)G_1+f(-i)G_2\\ &其中,G_1=\frac{A-\lambda_2I}{\lambda_1-\lambda_2}=\frac{1}{2i}\left( \begin{matrix} i&1\\-1&i \end{matrix} \right),G_2=\frac{A-\lambda_1I}{\lambda_2-\lambda_1}=-\frac{1}{2i}\left( \begin{matrix} -i&1\\-1&-i \end{matrix} \right)=\frac{1}{2i}\left( \begin{matrix} i&-1\\1&i \end{matrix} \right)\\ &令f(x)=e^{tx},则f(i)=e^{ti},f(-i)=e^{^{-ti}}\\ &\therefore e^{tA}=e^{ti}G_1+e^{-ti}G_2=\frac{e^{ti}}{2i}\left( \begin{matrix} i&1\\-1&i \end{matrix} \right)+\frac{e^{-ti}}{2i}\left( \begin{matrix} i&-1\\1&i \end{matrix} \right)=\left( \begin{matrix} \frac{e^{ti}+e^{-ti}}{2}&\frac{e^{ti}-e^{-ti}}{2i}\\ -\frac{e^{ti}-e^{-ti}}{2i}&\frac{e^{ti}+e^{-ti}}{2} \end{matrix} \right)=\left( \begin{matrix} cost&sint\\-sint&cost \end{matrix} \right) \end{aligned} 计算可得λ(A)={i,i},A是单阵,对于任意解析函数f(x)有谱公式:f(A)=f(i)G1+f(i)G2其中,G1=λ1λ2Aλ2I=2i1(i11i),G2=λ2λ1Aλ1I=2i1(i11i)=2i1(i11i)f(x)=etx,则f(i)=eti,f(i)=etietA=etiG1+etiG2=2ieti(i11i)+2ieti(i11i)=(2eti+eti2ietieti2ietieti2eti+eti)=(costsintsintcost)

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

A 是行和矩阵,故 λ ( A ) = { 5 , t r ( A ) − 5 } = { 5 , − 2 } , A 有两个互异特征根,故 A 为单阵,有谱分解 f ( A ) = f ( 5 ) G 1 + f ( − 2 ) G 2 , 其中 G 1 = A − λ 2 I λ 1 − λ 2 = 1 7 ( 3 4 3 4 ) , G 2 = I − G 1 = 1 7 ( 4 − 4 − 3 3 ) 令 f ( x ) = e t x , 则 f ( 5 ) = e 5 t , f ( − 2 ) = e − 2 t ∴ e t A = e 5 t G 1 + e − 2 t G 2 = e 5 t 7 ( 3 4 3 4 ) + e − 2 t 7 ( 4 − 4 − 3 3 ) = 1 7 ( 3 e 5 t + 4 e − 2 t 4 e 5 t − 4 e − 2 t 3 e 5 t + 4 e − 2 t 4 e 5 t − 4 e − 2 t ) ∣ e t A ∣ = e t r ( t A ) = e 3 t ( e ( t A ) ) − 1 = e − t A , 即将 t 替换为 − t 即可 , e − t A = 1 7 ( 3 e − 5 t + 4 e 2 t 4 e − 5 t − 4 e 2 t 3 e − 5 t + 4 e 2 t 4 e − 5 t − 4 e 2 t ) \begin{aligned} &A是行和矩阵,故\lambda(A)=\{5,tr(A)-5\}=\{5,-2\},A有两个互异特征根,故A为单阵,有谱分解\\ &f(A)=f(5)G_1+f(-2)G_2,其中G_1=\frac{A-\lambda_2I}{\lambda_1-\lambda_2}=\frac{1}{7}\left( \begin{matrix} 3&4\\3&4 \end{matrix} \right),G_2=I-G_1=\frac{1}{7}\left( \begin{matrix} 4&-4\\-3&3 \end{matrix} \right)\\ &令f(x)=e^{tx},则f(5)=e^{5t},f(-2)=e^{-2t}\\ &\therefore e^{tA}=e^{5t}G_1+e^{-2t}G_2=\frac{e^{5t}}{7}\left( \begin{matrix} 3&4\\3&4 \end{matrix} \right)+\frac{e^{-2t}}{7}\left( \begin{matrix} 4&-4\\-3&3 \end{matrix} \right)=\frac{1}{7}\left( \begin{matrix} 3e^{5t}+4e^{-2t}&4e^{5t}-4e^{-2t}\\ 3e^{5t}+4e^{-2t}&4e^{5t}-4e^{-2t}\\ \end{matrix} \right)\\ &\vert e^{tA}\vert=e^{tr(tA)}=e^{3t}\\ &(e^{(tA)})^{-1}=e^{-tA},即将t替换为-t即可,e^{-tA}=\frac{1}{7}\left( \begin{matrix} 3e^{-5t}+4e^{2t}&4e^{-5t}-4e^{2t}\\ 3e^{-5t}+4e^{2t}&4e^{-5t}-4e^{2t}\\ \end{matrix} \right) \end{aligned} A是行和矩阵,故λ(A)={5,tr(A)5}={5,2},A有两个互异特征根,故A为单阵,有谱分解f(A)=f(5)G1+f(2)G2,其中G1=λ1λ2Aλ2I=71(3344),G2=IG1=71(4343)f(x)=etx,f(5)=e5t,f(2)=e2tetA=e5tG1+e2tG2=7e5t(3344)+7e2t(4343)=71(3e5t+4e2t3e5t+4e2t4e5t4e2t4e5t4e2t)etA=etr(tA)=e3t(e(tA))1=etA,即将t替换为t即可,etA=71(3e5t+4e2t3e5t+4e2t4e5t4e2t4e5t4e2t)


在这里插入图片描述

通过特征方程 ∣ A − λ I ∣ 计算得 λ ( A ) = { − 2 , 1 , 1 } , 且 A − I = ( 3 6 0 − 3 − 6 0 − 3 − 6 0 ) , r ( A − I ) = 3 − 2 = 1 ∴ A 为单阵,有谱分解 f ( A ) = f ( 1 ) G 1 + f ( − 2 ) G 2 令 f ( x ) = e t x , f ( 1 ) = e t , f ( − 2 ) = e − 2 t , G 1 = A − λ 2 I λ 1 − λ 2 = 1 3 ( A + 2 I ) = ( 2 2 0 − 1 − 1 0 − 1 − 2 1 ) , G 2 = I − G 1 = ( − 1 − 2 0 1 2 0 1 2 0 ) 代入得 e t A = e t G 1 + e − 2 t G 2 = e t ( 2 2 0 − 1 − 1 0 − 1 − 2 1 ) + e − 2 t ( − 1 − 2 0 1 2 0 1 2 0 ) = ( 2 e t − e − 2 t 2 e t − 2 e − 2 t 0 e − 2 t − e − t 2 e − 2 t − e t 0 e − 2 t − e t 2 e − 2 t − 2 e t e t ) 令 t = 1 ,可得 e A = ( 2 e − e − 2 2 e − 2 e − 2 0 e − 2 − e − 1 2 e − 2 − e 0 e − 2 − e 2 e − 2 − 2 e e ) ∣ e A ∣ = e t r ( A ) = e 0 = 1 \begin{aligned} &通过特征方程\vert A-\lambda I\vert计算得\lambda(A)=\{-2,1,1\},且A-I=\left( \begin{matrix} 3&6&0\\-3&-6&0\\-3&-6&0 \end{matrix} \right),r(A-I)=3-2=1\\ &\therefore A为单阵,有谱分解 f(A)=f(1)G_1+f(-2)G_2\\ &令f(x)=e^{tx},f(1)=e^{t},f(-2)=e^{-2t},G_1=\frac{A-\lambda_2 I}{\lambda_1-\lambda_2}=\frac{1}{3}(A+2I)=\left( \begin{matrix} 2&2&0\\-1&-1&0\\-1&-2&1 \end{matrix} \right),G_2=I-G_1=\left( \begin{matrix} -1&-2&0\\1&2&0\\1&2&0 \end{matrix} \right)\\ &代入得e^{tA}=e^tG_1+e^{-2t}G_2=e^t\left( \begin{matrix} 2&2&0\\-1&-1&0\\-1&-2&1 \end{matrix} \right)+e^{-2t}\left( \begin{matrix} -1&-2&0\\1&2&0\\1&2&0 \end{matrix} \right)=\left( \begin{matrix} 2e^t-e^{-2t}&2e^t-2e^{-2t}&0\\ e^{-2t}-e^{-t}&2e^{-2t}-e^t&0\\ e^{-2t}-e^t&2e^{-2t}-2e^t&e^t \end{matrix} \right)\\ &令t=1,可得e^A=\left( \begin{matrix} 2e-e^{-2}&2e-2e^{-2}&0\\ e^{-2}-e^{-1}&2e^{-2}-e&0\\ e^{-2}-e&2e^{-2}-2e&e \end{matrix} \right)\\ &\vert e^A\vert = e^{tr(A)}=e^{0}=1 \end{aligned} 通过特征方程AλI计算得λ(A)={2,1,1},AI= 333666000 ,r(AI)=32=1A为单阵,有谱分解f(A)=f(1)G1+f(2)G2f(x)=etx,f(1)=et,f(2)=e2t,G1=λ1λ2Aλ2I=31(A+2I)= 211212001 ,G2=IG1= 111222000 代入得etA=etG1+e2tG2=et 211212001 +e2t 111222000 = 2ete2te2tete2tet2et2e2t2e2tet2e2t2et00et t=1,可得eA= 2ee2e2e1e2e2e2e22e2e2e22e00e eA=etr(A)=e0=1

d. 幂0阵(泰勒公式)

A k = 0 A^k=0 Ak=0 ,则A为幂0阵

在这里插入图片描述

( 1 ) A 2 = ( 1 − 1 1 − 1 ) ( 1 − 1 1 − 1 ) = 0 , 由幂等公式 A 2 = 0 ,则 e t A = I + t A + A 2 2 ! + ⋯ = I + t A + 0 + ⋯ = I + t A = ( 1 + t − t t 1 − t ) s i n ( t A ) = t A − ( t A ) 3 3 ! + ⋯ = t A = ( t − t t − t ) c o s ( t A ) = I − t 2 A 2 2 ! = I = ( 1 0 0 1 ) t = − t 时,可得 ( e t A ) − 1 = e ( − t ) A = ( 1 − t t − t 1 + t ) \begin{aligned} &(1)\\ &A^2=\left( \begin{matrix} 1&-1\\1&-1 \end{matrix} \right)\left( \begin{matrix} 1&-1\\1&-1 \end{matrix} \right)=0,由幂等公式A^2=0,则\\ &e^{tA}=I+tA+\frac{A^2}{2!}+\cdots=I+tA+0+\cdots=I+tA=\left( \begin{matrix} 1+t&-t\\t&1-t \end{matrix} \right)\\ &sin(tA)=tA-\frac{(tA)^3}{3!}+\cdots=tA=\left( \begin{matrix} t&-t\\t&-t \end{matrix} \right)\\ &cos(tA)=I-\frac{t^2A^2}{2!}=I=\left( \begin{matrix} 1&0\\0&1 \end{matrix} \right)\\ &t=-t时,可得(e^{tA})^{-1}=e^{(-t)A}=\left( \begin{matrix} 1-t&t\\-t&1+t \end{matrix} \right) \end{aligned} (1)A2=(1111)(1111)=0,由幂等公式A2=0,则etA=I+tA+2!A2+=I+tA+0+=I+tA=(1+ttt1t)sin(tA)=tA3!(tA)3+=tA=(tttt)cos(tA)=I2!t2A2=I=(1001)t=t时,可得(etA)1=e(t)A=(1ttt1+t)
在这里插入图片描述

3.3.5 常用 e t A e^{tA} etA

e t ( 0 1 − 1 0 ) = ( c o s t s i n t − s i n t c o s t ) e t ( 0 a − a 0 ) = ( c o s a t s i n a t − s i n a t c o s a t ) e^{t\left( \begin{matrix} 0&1\\-1&0 \end{matrix} \right)}=\left( \begin{matrix} cost&sint\\-sint&cost \end{matrix} \right)\\ e^{t\left( \begin{matrix} 0&a\\-a&0 \end{matrix} \right)}=\left( \begin{matrix} cosat&sinat\\-sinat&cosat \end{matrix} \right) et(0110)=(costsintsintcost)et(0aa0)=(cosatsinatsinatcosat)

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosTian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值