图像超分辨率技术简述

本文介绍了图像超分辨率技术,旨在将低分辨率图像提升至高分辨率。超分辨率技术分为基于单幅图像和图像序列的重建两类。按照技术手段,又可细分为基于插值、重建和学习的方法。基于学习的方法是近年来的研究热点,通过训练样本建立高、低分辨率图像的映射模型,以提升图像质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 图像超分辨率(Super Resolution, SR)就是将低分辨率(Low Resolution, LR)的图像通过一定的算法转提升到高分辨率(High Resolution, HR)。高分辨率图像具有更高的像素密度,更多的细节信息,更细腻的画质。要获得高分辨率图像,最直接的办法是采用高分辨率的相机,然而,在实际应用过程中,由于制作工艺和工程成本的考虑,很多场合都不会采用高分辨率、超分辨率的相机来进行图像信号的采集。因此,通过超分辨率技术来获取HR具有一定的应用需求。

刚才提到,HR是利用LR通过一定的算法来得到。按照可以使用的LR的数量,可以将超分辨率技术分为两类:

(1)基于单幅图像的超分辨率重建:

     主要利用某种先验模型或者匹配机制,从给定的外部资源中寻求待处理图像匹配的细节内容,并将其增加到原图当中,实现分辨率的提升。

(2)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值