模糊数学笔记:四、模糊矩阵与模糊关系

1、模糊矩阵
  • 定义 : 如果对于任意 i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n , i=1,2, \cdots, m ; j=1,2, \cdots, n, i=1,2,,m;j=1,2,,n, 都有 r i j ∈ [ 0 , 1 ] , r_{i j} \in[0,1], rij[0,1], 则称 R = ( r i , j ) m × n R=(r_{i,j})_{m\times n} R=(ri,j)m×n为模糊矩阵。特别地当 m = n m=n m=n则称 R R R为模糊方阵。

通俗地理解,即是若矩阵元素均在区间 [ 0 , 1 ] [0,1] [0,1]上,则称该矩阵为模糊矩阵。

  • 特殊模糊矩阵(零矩阵、单位矩阵、全称矩阵):

O = ( 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ 0 ) m × n , I = ( 1 0 ⋯ 0 0 1 ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 1 ) m × n , U = [ 1 1 ⋯ 1 1 1 ⋯ 1 ⋮ ⋮ ⋮ 1 1 ⋯ 1 ] m × n \boldsymbol{O}=\left(\begin{matrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{matrix}\right)_{m\times n}, \quad I=\left(\begin{matrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{matrix}\right)_{m \times n}, \quad U=\left[\begin{matrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{matrix}\right]_{m \times n} O=000000000m×n,I=100010001m×n,U=111111111m×n

2、模糊矩阵间的关系
  • 相等: A = B ⇔ a i j = b i j , i = 1 , 2 , ⋯ m ; j = 1 , 2 , ⋯   , n A=B \Leftrightarrow a_{i j}=b_{i j}, \quad i=1,2, \cdots m ; j=1,2, \cdots, n A=Baij=bij,i=1,2,m;j=1,2,,n
  • 包含: A ⩽ B ⇔ a i j ⩽ b i j , i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n A \leqslant B \Leftrightarrow a_{i j} \leqslant b_{i j}, i=1,2, \cdots, m ; j=1,2, \cdots, n ABaijbij,i=1,2,,m;j=1,2,,n
3、模糊矩阵的交并余运算
  • 并:相同位置元素取大

A ∪ B = ( a i j ∨ b i j ) m × n A \cup B =\left(a_{i j} \vee b_{i j}\right)_{m \times n} AB=(aijbij)m×n

  • 交: 相同位置元素取小

A ∩ B = ( a i j ∧ b i j ) m × n A \cap B =\left(a_{i j} \wedge b_{i j}\right)_{m \times n} AB=(aijbij)m×n

  • 余:1减去所有元素

A C = ( 1 − a i j ) m × n A^C =\left(1- a_{i j} \right)_{m \times n} AC=(1aij)m×n

A = ( 1 0.1 0.3 0.5 ) , B = ( 0.7 0 0.4 0.9 ) \boldsymbol{A}=\left(\begin{array}{cc} 1 & 0.1 \\ 0.3 & 0.5 \end{array}\right), \quad \boldsymbol{B}=\left(\begin{array}{cc} 0.7 & 0 \\ 0.4 & 0.9 \end{array}\right) A=(10.30.10.5),B=(0.70.400.9)

A ∪ B = ( 1 ∨ 0.7 0.1 ∨ 0 0.3 ∨ 0.4 0.5 ∨ 0.9 ) = ( 1 0.1 0.1 0.9 ) A ∩ B = ( 1 ∧ 0.7 0.1 ∧ 0 0.3 ∧ 0.4 0.5 ∧ 0.9 ) = ( 0.7 0 0.3 0.5 ) A C = ( 1 − 0.1 1 − 0.1 1 − 0.3 1 − 0.5 ) = ( 0 0.9 0.7 0.5 ) A \cup B=\left(\begin{matrix} 1 \vee 0.7 & 0.1 \vee 0 \\ 0.3 \vee 0.4 & 0.5 \vee 0.9 \end{matrix}\right)=\left(\begin{matrix} 1 & 0.1 \\ 0.1 & 0.9 \end{matrix}\right) \\ A \cap B=\left(\begin{matrix} 1 \wedge 0.7 & 0.1 \wedge 0 \\ 0.3 \wedge 0.4 & 0.5 \wedge 0.9 \end{matrix}\right)=\left(\begin{matrix} 0.7 & 0 \\ 0.3 & 0.5 \end{matrix}\right) \\ \\ A^{C}=\left(\begin{matrix} 1-0.1 & 1-0.1 \\ 1-0.3 & 1-0.5 \end{matrix}\right)=\left(\begin{matrix} 0 & 0.9 \\ 0.7 & 0.5 \end{matrix}\right) AB=(10.70.30.40.100.50.9)=(10.10.10.9)AB=(10.70.30.40.100.50.9)=(0.70.300.5)AC=(10.110.310.110.5)=(00.70.90.5)

注:模糊矩阵的运算性质与模糊集合完全一致。

4、模糊关系

对有限论域 U = { u 1 , u 2 , ⋯   , u n } , V = { v 1 , v 2 , ⋯   , v n } , U=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}, V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}, U={u1,u2,,un},V={v1,v2,,vn}, 若元标 r i j = R ( u i , v j ) , r_{i j}=R\left(u_{i}, v_{j}\right), rij=R(ui,vj), 则矩阵 R = ( r i j ) n × n R=\left(r_{i j}\right)_{n \times n} R=(rij)n×n,表示从 U U U V V V 的一个模糊关系,或者说一个模糊矩阵确定一个模糊关系.

  • 性质:模糊关系具有对称性和自反性。
5、 模糊关系的合成
  • 定义: 设 Q , R Q, R Q,R 为模糊关系,所谓 Q Q Q R R R 的合成,就是从 U U U W W W 的一个模糊关系,记作 Q ∘ R Q\circ R QR. 其定义为:

Q ∘ R = ∨ k = 1 l ( q i k ∧ r k j ) Q \circ R=\vee _{k=1}^{l}(q_{ik} \wedge r_{kj}) \\ QR=k=1l(qikrkj)

:这里表示 Q Q Q的每行先与 R R R的每列对应对小,再对这一组取大,得到该位置的元素。其操作方式与矩阵乘法类似。

特别地,记:
R 2 = R ∘ R , R n = R n − 1 ∘ R R^{2}=R \circ R, \quad R^{n}=R^{n-1} \circ R R2=RR,Rn=Rn1R

  • :设模糊关系

Q = ( 0.3 0.7 0.2 1 0 0.9 ) , R = ( 0.8 0.3 0.1 0.8 0.5 0.6 ) Q=\left(\begin{matrix} 0.3 & 0.7 & 0.2 \\ 1 & 0 & 0.9 \end{matrix}\right), \quad R=\left(\begin{matrix} 0.8 & 0.3 \\ 0.1 & 0.8 \\ 0.5 & 0.6 \end{matrix}\right) Q=(0.310.700.20.9),R=0.80.10.50.30.80.6

记:
Q ∘ R = ( s 11 s 12 s 21 s 22 ) Q{\circ} R=\left(\begin{matrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{matrix}\right) QR=(s11s21s12s22)
由模糊关系合成的定义:
s 11 = ( 0.3 ∧ 0.8 ) ∨ ( 0.7 ∧ 0.1 ) ∨ ( 0.2 ∧ 0.5 ) = 0.3 s 12 = ( 0.3 ∧ 0.3 ) ∨ ( 0.7 ∧ 0.8 ) ∨ ( 0.2 ∧ 0.6 ) = 0.7 s 21 = ( 1 ∧ 0.8 ) ∨ ( 0 ∧ 0.1 ) ∨ ( 0.9 ∧ 0.5 ) = 0.8 s 22 = ( 1 ∧ 0.3 ) ∨ ( 0 ∧ 0.8 ) ∨ ( 0.9 ∧ 0.5 ) = 0.6 \begin{matrix} s_{11}=(0.3 \wedge 0.8) \vee(0.7 \wedge 0.1) \vee(0.2 \wedge 0.5)=0.3 \\ s_{12}=(0.3 \wedge 0.3) \vee(0.7 \wedge 0.8) \vee(0.2 \wedge 0.6)=0.7 \\ s_{21}=(1 \wedge 0.8) \vee(0 \wedge 0.1) \vee(0.9 \wedge 0.5)=0.8 \\ s_{22}=(1 \wedge 0.3) \vee(0 \wedge 0.8) \vee(0.9 \wedge 0.5)=0.6 \end{matrix} s11=(0.30.8)(0.70.1)(0.20.5)=0.3s12=(0.30.3)(0.70.8)(0.20.6)=0.7s21=(10.8)(00.1)(0.90.5)=0.8s22=(10.3)(00.8)(0.90.5)=0.6
则:
Q ∘ R = ( 0.3 0.7 0.8 0.6 ) Q {\circ} R=\left(\begin{array}{ll} 0.3 & 0.7 \\ 0.8 & 0.6 \end{array}\right) QR=(0.30.80.70.6)

  • 6
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值