有限个极限运算及常见错误小结


初学极限运算的时候初学者总会犯一些问题,尤其当课程进度推进时,各种知识、方法不断出现,这时如果掌握不牢固就很容易把自己弄晕。其实要掌握这些运算方法并不困难,记住这个要领: 各种运算法则的使用前提是每个步骤中涉及的极限一定都要存在是这些运算的前提(如果有分母,那么分母一定不能为零)。(无限个极限的情形单独讨论)

本文先总结把极限运算的各种常用方法,再针对一些具体的疑难点进行分解讲解。大家可以根据自己的实际情况选择性阅读或者查阅。

一、极限运算法则回顾
  • 最基本的运算法则 – 四则运算:

如果 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x)=A, \lim g(x)=B limf(x)=A,limg(x)=B, 那么

(1) lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) = A ± B \lim [f(x) \pm g(x)]=\lim f(x) \pm \lim g(x)=A \pm B lim[f(x)±g(x)]=limf(x)±limg(x)=A±B;

(2) lim ⁡ [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B \lim [f(x) \cdot g(x)]=\lim f(x) \cdot \lim g(x)=A \cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB

(3) 若又有 B ≠ 0 B \neq 0 B=0, 则
lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B \lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}=\frac{A}{B} limg(x)f(x)=limg(x)limf(x)=BA

注:

1、只要是有限个极限进行计算都可以直接使用四则运算法则

2、常数直接参与所有四则运算(作为分母时不能为0)

3、上述结论对数列仍然成立

  • 无穷小替换

(1)和差取大: 若 β = o ( α ) \beta=\mathrm{o}(\alpha) β=o(α), 则 α ± β ∼ α \alpha \pm \beta \sim \alpha α±βα

(2)因式替换:若 α ∼ β , \alpha \sim \beta, αβ, φ ( x ) \varphi(x) φ(x) 极限存在或有界 lim ⁡ α φ ( x ) = lim ⁡ β φ ( x ) \lim \alpha \varphi(x)=\lim \beta \varphi(x) limαφ(x)=limβφ(x)

(2)若 α ∼ α ~ , β ∼ β ~ \alpha \sim \widetilde{\alpha}, \beta \sim \widetilde{\beta} αα ,ββ , 则 lim ⁡ β α = lim ⁡ β ~ α ~ \lim \frac{\beta}{\alpha}=\lim \frac{\widetilde{\beta}}{\widetilde{\alpha}} limαβ=limα β (两个极限各自都要存在)

(3)和差替换:

  • 条件:
    • α ∼ α ′ , β ∼ β ′ \alpha \sim \alpha^{\prime}, \beta \sim \beta^{\prime} αα,ββ
    • β \beta β α \alpha α 不等价
  • 结论: α − β ∼ α ′ − β ′ , \alpha-\beta \sim \alpha^{\prime}-\beta^{\prime}, αβαβ, lim ⁡ α − β γ = lim ⁡ α ′ − β ′ γ \lim \frac{\alpha-\beta}{\gamma}=\lim \frac{\alpha^{\prime}-\beta^{\prime}}{\gamma} limγαβ=limγαβ

特别注意 α ∼ β \alpha \sim \beta αβ 时此结论未必成立!!!!

后面无穷小部分详细解释

  • 洛必达法则

(1) 当 x → a x \rightarrow a xa 时: f ( x ) → 0 , F ( x ) → 0 f(x) \rightarrow 0, F(x) \rightarrow 0 f(x)0,F(x)0

(2) 在点 a a a 的某去 心邻域内 , f ′ ( x ) , f^{\prime}(x) ,f(x) F ′ ( x ) F^{\prime}(x) F(x) 都存在且 F ′ ( x ) ≠ 0 F^{\prime}(x) \neq 0 F(x)=0

(3) lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{F^{\prime}(x)} limxaF(x)f(x) 存在(或为无穷大)

lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim _{x \rightarrow a} \frac{f(x)}{F(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{F^{\prime}(x)} xalimF(x)f(x)=xalimF(x)f(x)
特别特别注意:上述的(1),(2),(3)必须全部同时满足!

二、四则运算中常犯的问题
  • 例1

lim ⁡ x → 1 x 2 − 5 x + 4 x − 1 = lim ⁡ x → 1 1 − 5 + 4 1 − 1 = 0 0 = ? ? ? ? \lim_{x\rightarrow 1} \frac{x^2 - 5x + 4}{x-1} = \lim_{x\rightarrow 1} \frac{1 - 5 + 4}{1-1} = \frac{0}{0} = ???? x1limx1x25x+4=x1lim1115+4=00=????

问题:这个极限怎么算啊?无穷小相除等于多少?

错误分析: 这道题是典型的分母为0的情形,正确的做法是先化简,再求极限。

正解:
lim ⁡ x → 1 x 2 − 5 x + 4 x − 1 = lim ⁡ x → 1 ( x − 4 ) ( x − 1 ) x − 1 = lim ⁡ x → 1 ( x − 4 ) = 1 − 4 = − 3 \lim_{x\rightarrow 1} \frac{x^2 - 5x + 4}{x-1} = \lim_{x\rightarrow 1} \frac{(x-4)\cancel{(x-1)}}{\cancel{x-1}} = \lim_{x\rightarrow 1}(x-4)=1-4=-3 x1limx1x25x+4=x1limx1 (x4)(x1) =x1lim(x4)=14=3

  • 例2

lim ⁡ x → + ∞ x ( x 2 + 1 − x ) = lim ⁡ x → + ∞ x ⋅ lim ⁡ x → + ∞ ( x 2 + 1 − x ) = ∞ ( ∞ − ∞ ) = ? ? ? \lim _{x \rightarrow+\infty} x(\sqrt{x^{2}+1}-x)=\lim _{x \rightarrow+\infty} x \cdot\lim _{x \rightarrow+\infty} (\sqrt{x^{2}+1}-x) = \infty(\infty-\infty) = ??? x+limx(x2+1 x)=x+limxx+lim(x2+1 x)=()=???

问题:这种无穷大的极限怎么算啊?无穷大乘无穷大等于多少啊?无穷大减无穷大还是无穷大么?

错误分析: 上述极限中四则运算的前提不满足,最后一个等号前每一项都是无穷大。正确的做法是先通分,再变换为满足四则运算的形式进行计算。

正解
lim ⁡ x → + ∞ x ( x 2 + 1 − x ) = lim ⁡ x → + ∞ x x 2 + 1 + x = lim ⁡ x → + ∞ 1 1 + 1 x 2 + 1 = 1 2 \lim _{x \rightarrow+\infty} x(\sqrt{x^{2}+1}-x)=\lim _{x \rightarrow+\infty} \frac{x}{\sqrt{x^{2}+1}+x}=\lim _{x \rightarrow+\infty} \frac{1}{\sqrt{1+\frac{1}{x^{2}}}+1}=\frac{1}{2} x+limx(x2+1 x)=x+limx2+1 +xx=x+lim1+x21 +11=21

三、无穷小常犯的问题
  • 例3

lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 = lim ⁡ x → 0 x − x x 3 = 0 0 = ? ? ? \lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}} = \lim _{x \rightarrow 0} \frac{x-x}{x^{3}} = \frac{0}{0}=??? x0limx3tanxsinx=x0limx3xx=00=???

问题: 0 0 \frac{0}{0} 00怎么又来了?这个怎么求啊?。。。。

错误分析: 上例是最常出错的一种类型。回到替换法则部分不难看到在无穷小 α − β \alpha - \beta αβ替换时必须要特别注意 α ∼ β \alpha \sim \beta αβ的情况。其根本原因在于:无穷小的减法有可能改变无穷小的阶数。

比如:考虑 x → 0 x\rightarrow0 x0时的两个无穷小: α = x 3 + 2 x \alpha=x^3+2x α=x3+2x β = x 3 \beta = x^3 β=x3。此时它们相减变成:
α − β = x 3 + 2 x − x 3 = 2 x \alpha-\beta=x^3+2x - x^3=2x αβ=x3+2xx3=2x
注意到原来的两个无穷小都是 α , β ∼ x 3 \alpha,\beta \sim x^3 α,βx3,而现在它们的商变成了 α − β ∼ 2 x \alpha-\beta\sim 2x αβ2x

而在本例中,更为特殊的情况出现了, tan ⁡ x − sin ⁡ x \tan x-\sin x tanxsinx 将原本低阶的无穷小变成了高阶。

正解
lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 = lim ⁡ x → 0 tan ⁡ x ( 1 − cos ⁡ x ) x 3 = lim ⁡ x → 0 x ⋅ 1 2 x 2 x 3 = 1 2 \lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}} = \lim _{x \rightarrow 0} \frac{\tan x(1-\cos x)}{x^{3}} =\lim _{x \rightarrow 0} \frac{x \cdot \frac{1}{2} x^{2}}{x^{3}}=\frac{1}{2} x0limx3tanxsinx=x0limx3tanx(1cosx)=x0limx3x21x2=21
由此可见 tan ⁡ x − sin ⁡ x ∼ x 3 \tan x-\sin x\sim x^3 tanxsinxx3

本例还可以用Taylor公式来进行解释:

考虑两个函数的Taylor展开:

tan ⁡ x = x + x 3 3 + 2 x 5 15 + ⋯ \tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\cdots tanx=x+3x3+152x5+

sin ⁡ x = x − x 3 3 ! + x 5 5 ! − ⋯ \sin x= x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\cdots sinx=x3!x3+5!x5

因此:
tan ⁡ x − sin ⁡ x = x 3 2 + x 5 8 + 13 x 7 240 + o ( x 9 ) \tan x - \sin x = \frac{x^{3}}{2}+\frac{x^{5}}{8}+\frac{13 x^{7}}{240}+\mathrm{o}\left(x^{9}\right) tanxsinx=2x3+8x5+24013x7+o(x9)
对本例,其实还可以再简化成:
tan ⁡ x − sin ⁡ x = x 3 2 + o ( x 3 ) \tan x - \sin x = \frac{x^{3}}{2}+\mathrm{o}\left(x^{3}\right) tanxsinx=2x3+o(x3)
因此:
lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 = lim ⁡ x → 0 x 3 2 + o ( x 3 ) x 3 = 1 2 \lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}} = \lim _{x \rightarrow 0} \frac{\frac{x^{3}}{2}+\mathrm{o}\left(x^{3}\right)}{x^{3}}=\frac{1}{2} x0limx3tanxsinx=x0limx32x3+o(x3)=21

四、洛必达常犯的问题
  • 例4

lim ⁡ x → 1 6 x 6 x − 2 = lim ⁡ x → 1 6 6 = 1 \cancel{\lim _{x \rightarrow 1} \frac{6 x}{6 x-2} =\lim _{x \rightarrow 1} \frac{6}{6}=1} x1lim6x26x=x1lim66=1

问题:这个怎么和答案不对啊?。。。

错误分析: 洛必达法则使用的前提是,极限式必须是**不定型!**也就是说,必须是以下几类的其中一种:

无穷大相关: ∞ − ∞ , ∞ ∞ , 1 ∞ \infty-\infty,\frac{\infty}{\infty},1^{\infty} ,,1

零、零与无穷大混合: 0 0 , 0 ⋅ ∞ , 0 0 , 1 ∞ , ∞ 0 \frac{0}{0},0\cdot \infty,0^{0}, 1^{\infty}, \infty^{0} 00,0,00,1,0

仔细观察不难发现,原极限式中函数分子分母的极限都是存在的,因此直接计算即可。
正解:
lim ⁡ x → 1 6 x 6 x − 2 = lim ⁡ x → 1 6 x lim ⁡ x → 1 ( 6 x − 2 ) = 6 6 − 2 = 3 2 \lim_{x \rightarrow 1} \frac{6 x}{6 x-2} =\frac{\lim_{x \rightarrow 1} 6x}{\lim_{x \rightarrow 1} (6x-2)}=\frac{6}{6-2}=\frac{3}{2} x1lim6x26x=limx1(6x2)limx16x=626=23

  • 1
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半个冯博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值