
线性代数
源梦想
考研结束,最近开始整理专业课各种难点,并尽量用自己的理解发布给大家。(最近有亿点点忙,更新进度有点慢哈)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
常数项级数基本概念及证明。
一,常数项级数的基本概念二,两个常见p级数,等比级数证明。1.p级数2.等比级数三,常数项级数的性质。四,性质的严格证明。1.2.3.4.5.原创 2023-04-10 22:12:38 · 519 阅读 · 0 评论 -
理清二次型,线性变换,合同,等之间的关系。
一,定义1.二次型定义2.线性变换定义3.合同定义4.二次型的标准型与规范型定义5.惯性定理二,联系三,总结原创 2023-04-10 22:01:26 · 632 阅读 · 0 评论 -
可相似对角化的两个充要,两个充分证明。
一.2个充要条件1.严格证明①n个无关特征向量②k重特征值必须对应k个无关特征向量二.2个充分1.严格证明原创 2023-04-07 21:03:53 · 1137 阅读 · 0 评论 -
矩阵相似的四个必要条件及性质证明。
一.矩阵相似的四个必要1.四个必要条件2.严格证明必要1 秩相等必要2 行列式相等必要3 特征值相等必要4 迹相等二.矩阵相似性质1.矩阵相似性质2.严格证明性质1 次幂相似,多项式相似性质2 可逆相似,可逆的多项式相似性质3 转置相似性质4 伴随相似原创 2023-04-07 20:55:17 · 27906 阅读 · 3 评论 -
抽象型,具体型矩阵特征值,特征向量求法
例题:例题:原创 2023-04-07 20:44:21 · 678 阅读 · 0 评论 -
方程组的公共解与同解。
1.公共解的三种方式不同方式所用例题1.方式一2.方式二3.方式三2.同解方程组的三种方式不同方式所用例题1.方式一2.方式二3.方式三原创 2023-04-03 21:30:53 · 4091 阅读 · 1 评论 -
齐次与非齐次方程求解过程及有解条件的关系。
">原创 2023-04-03 21:05:55 · 826 阅读 · 0 评论 -
矩阵行秩与列秩的关系。
所以,行秩与列秩的关系为,,这也是为什么,我们既可以:通过行变换也可以通过列变换求秩。通过对行的初等列变换,以及对列的初等行变换求极大无关组,都是可以的。原创 2023-04-03 20:33:11 · 14513 阅读 · 0 评论 -
有关秩的结论。
由上述矩阵兴致明显可以得出。原创 2023-04-01 22:03:52 · 2275 阅读 · 0 评论 -
向量组是否相关与行列式,方程组,秩的联系。
**1)对于非齐次方程组来说**: 若D/=0. ---①系数行列式D作为未知数分母 ---②用b1....bn替换对应列数作为分子,进而得到x1x2...xn唯一存在。原创 2023-03-28 23:04:43 · 1498 阅读 · 0 评论 -
矩阵与向量组关系。
由MxN个数aij,排成的m行n列的数表称为m行n列的矩阵,简称为MxN矩阵。那么我说,如果将矩阵所有行/列组成若干向量,显然是成立的。原创 2023-03-31 19:22:56 · 1643 阅读 · 0 评论