
高等数学
各种总结,对知识点的理解。
源梦想
考研结束,最近开始整理专业课各种难点,并尽量用自己的理解发布给大家。(最近有亿点点忙,更新进度有点慢哈)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
f(x)可积的三个充分一个必要
三个充分:①若f(x)在[a,b]上连续,则 定积分(图片所示) 必定存在。②若f(x)在[a,b]上有界,且只有有限个间断点,则上述定积分(图片)必存在。③若f(x)在[a,b]上只有有限个第一类的间断点,则上述定积分(图片)必存在。④若f(x)在[a,b]上单调,则定积分存在。必要条件:若定积分(图片)存在则 f(x)在[a,b]上必有界。注:有上述可知,有界条件比闭区间连续弱。所以f(x)闭区间连续=>f(x)有界。原创 2023-06-07 17:32:16 · 3514 阅读 · 0 评论 -
定积分比较大小的常用手段。
①区间对称,利用被积函数奇偶性②放缩(利用常用不等式,结论等)③将 1 转换成定积分④直接算⑤“拆区间,变量代换改区间再合并”原创 2023-05-07 20:10:30 · 5996 阅读 · 0 评论 -
极值点与拐点的存在条件。
① 我们无需考虑 f ’ (X0) 与 f ‘’ (X0) 是否存在,以及f(x)在 X0 是否连续,只需要看 f ’ (X0) f ‘’ (X0) 左右极限是否异号即可,判断是否属于极值点或拐点。②若 f(x) 在 x = X0 不可导,则x = X0 与 ( X0 , f(X0) )可以同时是极值点与拐点。③若 f(x) 在 x = X0 可导,则若 ( X0 , f(X0) ) 是拐点,则必不为极值点。①f ‘‘ (X0) 不存在的点。①f ‘ (X0) 不存在的点。原创 2023-05-07 20:45:20 · 2500 阅读 · 0 评论 -
变上限积分有周期性的充要条件。
假设f(x)为周期函数,即f(x) = f(x+T)原创 2023-05-05 13:20:55 · 7994 阅读 · 1 评论 -
拉格朗日中值定理求极限什么时候适用。
形如:lim ( f[r(x)] - f[g(x)] ) / g = lim f ’ (ζ) (r(x) - g(x) )/g①若r(x) - g(x) 与 g 同阶,则可以用。②若r(x) - g(x) 是低阶 , 且 r(x) ~ g(x) 则 可用。③若r(x) - g(x) 是低阶 , 且 r(x) 不等价与 g(x) 则不可以用。原创 2023-05-05 11:32:49 · 5011 阅读 · 4 评论 -
若f(x)在[a,b]连续,则函数F(x)=变上限积分在[a,b]上可导
在[a,b]上可导。原创 2023-04-30 15:54:52 · 481 阅读 · 0 评论 -
f(x)与|f(x)|,f ‘ (x),F(x)常见关系。
(f(x)在"[a,b]上连续" => |f(x)|在"[a,b]连续")①如果f(x)在[a,b]上连续。则|f(x)|在[a,b]上连续. ((f(x)可积 => |f(x)|可积)证明略。反例:f(x)有无限个间断点,f(x)不可积。但是|f(x)|可积。①f(x)在x0可导,则当f(x0) ≠ 0时f(x)可导 |f(x)|可导②f(x)在x0可导,则当f(x0) = 0时,有两种情况。原创 2023-05-03 17:32:48 · 6955 阅读 · 0 评论 -
傅里叶级数
一.基本概念二.常见展开周期及展开方式。原创 2023-04-11 20:27:32 · 163 阅读 · 0 评论 -
幂级数及其收敛准则,展开式,和函数。
一.幂级数的基本概念二.幂级数的性质1.加减乘除性质。2.三大分析性质。三.函数的幂级数展开。1.基本概念2.常用七个麦克劳林级数。四.幂级数展开的两种方式五.和函数原创 2023-04-11 20:23:04 · 1170 阅读 · 0 评论 -
三种常数项级数收敛准则。
三种常数项级数收敛准则。原创 2023-04-11 20:05:49 · 423 阅读 · 0 评论 -
”抓大头“(无穷/无穷)时候两个注意点
1.一定要确定是:无穷/无穷的时候才“抓大头”。2.对于根号下含有偶次幂x,抓大头,对于正负的结果是不一样的,所以可能要考虑分左右极限。原创 2023-03-18 19:19:00 · 4351 阅读 · 0 评论 -
求间断点流水线
第一步:找间断点位置 ---------1.分母为0的点 ---------2.无定义的点 ---------3.分段函数的分段点 第二步:求极限,并且根据极限结果判断间断点类型 注意:1)当x->0时候,lnx->像这种x=0也是其间断点,为无定义点。 ---------2)当x->0时候,1/tanx为分母零点,但是请不要忽略 --------------当x->π/2时候,为无定义点,即当分母含有tanx时候注意考虑所有x=kπ/2(k为正整数)。原创 2023-03-18 11:50:13 · 1362 阅读 · 0 评论 -
求渐近线的流水线(/手动滑稽)
第一步:找原式间断点-为求垂直渐近线准备。第二步:依次求三种间断点(斜渐近线有两种方法)斜渐近线方式1:(x->+∞/-∞)limf(x)/x=a,且(x->+∞/-∞)limf(x)-ax=b。斜渐近线方式2:公式:若f(x)在x->∞时可表示为ax+b+o(x).(o(x)->0)则斜渐近线为y=ax+b(下面有推导)。原创 2023-03-14 21:14:12 · 311 阅读 · 0 评论 -
什么时候极限等式左右可以同时乘以无穷小
# 1.结论> 当极限不为0的时候,左右可同时乘以无穷小。# 2.应用场景*若x->0,可以等式同时乘以x,左边消一个x(重点,可以用来消一次x),右边极限->0。*原创 2023-03-14 11:59:04 · 743 阅读 · 0 评论 -
定积分之积分上限函数分段问题
1.由于 积分区间不满足”上限>下限“而分段 结论:积分上限函数要保证,这个x的范围最小值大于a,否则分段。 分段原则:中间段为x范围的最小值。(为保证“上限范围”始终大于“下限范围”) 注:如果为”积分下限函“数就先转为上限(加负号)在判断是否分段。 2.由于被积表达式在不同区间段不同,而分段。 即:f(x)在x不同范围表达式不同 正常分。(例题3)原创 2023-03-13 13:49:25 · 2118 阅读 · 0 评论 -
一元导数与多元求导数总结
③隐函数求导方法一:可以两边同时对x求导,然后表示为dy/dx=......的形式即可方法二:可以利用多元函数中的公式如下。方法三:一元微分形式不变性。原创 2023-03-07 19:33:05 · 5407 阅读 · 1 评论 -
二重积分极坐标展开与三重积分先“2后1”中的“2”极坐标展开区别
如下场景:积分区域为x^2^+y^2^=2z 与z = 4围成的空间 ,被积表达式为∭(x^2^+y^2^+z)dv利用先2后1展开(2用二重积分极坐标展开):原创 2023-03-01 11:43:23 · 1099 阅读 · 0 评论 -
三重积分为何不能直接带入积分区域?搞懂这些,重积分基本可以了
错误2:二三重积分的区域都是一个范围,且在该范围不同地方被积表达式式变化的(也就是说被积表达式是一个变量),等式带入,相当于将被积表达式钉死在范围边界成立的地方,即无论在范围哪个地方,都是边界成立时的被积表达式。转换之后不能带入:高斯公式之后,积分区域由曲面变成曲面所围成的空间,这时候,这无数个点不仅仅时曲面上等式成立的点,还包含曲面所围成的空间里面等式不成立的点,故不能带入。转换之前可以带入:因为对曲面积分,积分区域时曲面,曲面是由无数个点组成的,这无数个点在曲面表达式都是成立的,故可以直接带入。原创 2023-03-01 11:04:32 · 8570 阅读 · 7 评论