矩阵相似的四个必要条件及性质证明。

文章详细阐述了矩阵相似的四个必要条件——秩相等、行列式相等、特征值相等和迹相等,并提供了严格的数学证明。接着,探讨了矩阵相似的几个重要性质,包括矩阵的次幂相似、可逆相似以及转置和伴随相似,这些性质揭示了矩阵相似在理论和应用中的深刻含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.矩阵相似的四个必要

1.四个必要条件

在这里插入图片描述

2.严格证明

必要1 秩相等

在这里插入图片描述

必要2 行列式相等在这里插入图片描述
必要3 特征值相等在这里插入图片描述
必要4 迹相等在这里插入图片描述

二.矩阵相似性质

1.矩阵相似性质

在这里插入图片描述

2.严格证明

性质1 次幂相似,多项式相似

在这里插入图片描述

,

性质2 可逆相似,可逆的多项式相似在这里插入图片描述
性质3 转置相似

在这里插入图片描述

性质4 伴随相似

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值