矩阵与向量组关系。

文章讨论了矩阵的概念,强调矩阵是由行和列向量构成,并指出矩阵的秩反映了向量间的关系。向量组的秩与矩阵秩相等,表示信息量的相同。矩阵的等价关注同型矩阵的信息关系,而向量组的等价还需考虑几何意义,即维度的一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.矩阵

1.首先,引入矩阵
由MxN个数aij,排成的m行n列的数表称为m行n列的矩阵,简称为MxN矩阵。
那么我说,如果将矩阵所有行/列组成若干向量,显然是成立的。

2.重要观点1:矩阵也是由若干行(列)向量拼成的。

3.重要观点2:矩阵不能运算,但是若干向量之间可能存在着某种关系,即平行/线性相关。

3.这种关系反映了矩阵的本质特征,记为rank
我们知道相互平行的向量是可以被互相表示的,则构成矩阵的若干向量之间若存在平行,则可以被替代。替代到不存在平行关系时候,则剩下的个数即为秩。<=> 若存在k阶子式不为0,而任意k+1阶子式全为0,则r(A)=k,且r(Anxn)=n <=> |A|/=0 <=> A可逆。

2.向量组

即多个向量在一起,即为向量组,一定可以构成矩阵。
极大无关组个数即为秩。则可知矩阵秩与向量组的秩是一回事的两种说法。

3.等价区别

1.对于矩阵来说
矩阵A,B同型下,AB等价<=>r(A)=r(B)。

2.对于向量组来说
向量组(I) ,(II)同维下(向量个数可以不同,即向量组对应的矩阵可以是不同型)(I),(II)等价<=>r(I) = r(II) =r(I | II)。

3.解释为何明明矩阵就是向量组,却为何等价要求不同。

对于矩阵来说,表示仅仅是信息上的关系,数字与数字之间的关系,只要求同型前提下,若有效信息个数相同则就是等价。(并没有明确要求两个矩阵的有效信息一定存在某种关系,如相等。)

对于向量组来说,虽说两者的秩是一个意思,但是向量组还表示空间的几何意义。即如果两个向量组等价,不仅仅要求两者秩相同(极大无关组成员数量相同),还一定要求两个向量组的极大无关组成员,表示的是同一个维度。否则不同维度是等价不了的。
在这里插入图片描述

### 矩阵向量组概念及其关系 #### 1. 矩阵的概念 矩阵是一个按照长方阵列排列的复数或实数集合[^1]。它由行列组成,通常用于表示线性变换以及求解线性方程组。 #### 2. 向量组的概念 向量组是一系列具有相同维度的向量组成的集合[^3]。这些向量可以看作是从原点出发指向不同位置的箭头,它们不仅具备大小还拥有方向属性。 #### 3. 矩阵向量组关系 - **线性组合**:给定向量组 \(\alpha_1, \alpha_2,\ldots ,\alpha_n\) 一组标量 \(c_1,c_2,...,c_n\) ,则表达式\[ c_1\alpha_1+c_2\alpha_2+\cdots +c_n\alpha_n \] 称为这个向量组的一个线性组合。 - **基底坐标转换**:如果存在一个\(n\times n\) 的非奇异矩阵 \(P=[p_{ij}]\),使得任意两个同维数的空间中的向量可以通过乘以此类矩阵相互映射,则称这两个空间之间存在着一种通过此矩阵实现的基础变化关系。 - **秩极大无关子集**:设有一个m×n阶矩阵A=(aij),其各列为αi(i=1...n)构成一向量组;那么该向量组的最大线性无关部分即为其对应矩阵A的列满秩情况下的最大数目r(A)。 ```mermaid graph TB; A[矩阵] --> B{操作}; C[加法/减法运算]; D[数乘运算]; E[转置]; F[逆]; G[特征值分解]; H[向量组] --> I{特性}; J[线性相关]; K[线性无关]; L[生成空间]; M[基]; N[两者间联系] --> O{表现形式}; P[线性组合]; Q[基底坐标转换]; R[秩极大无关子集]; ``` 上述图形展示了矩阵向量组之间的基本逻辑关联结构图。其中包含了各自的主要特点及二者间的交互作用方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源梦想

制作不易,给几分窝囊费大哥们。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值