Deep Learning for 3D Point Clouds: A Survey

Guo Y, Wang H, Hu Q, et al. Deep learning for 3d point clouds: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
之前组会要分享的一篇综述,太长了没读完,不知道啥时候能写完。。

一、摘要

最近,点云学习因其在计算机视觉、自动驾驶和机器人等许多领域的广泛应用而引起越来越多的关注。作为人工智能领域的主导技术,深度学习已成功用于解决各种二维视觉问题。然而,由于使用深度神经网络处理点云所面临的独特挑战,点云上的深度学习仍处于起步阶段。最近,点云上的深度学习甚至变得蓬勃发展,人们提出了许多方法来解决这一领域的不同问题。为了促进未来的研究,本文全面回顾了点云深度学习方法的最新进展。

本文综述了三维理解的最新方法,包括三维形状分类、三维目标检测与跟踪、三维场景与目标分割。对这些方法进行了全面的分类和性能比较。文中还介绍了各种方法的优缺点,并列举了潜在的研究方向。
三维数据在不同领域有着广泛的应用,包括自动驾驶、机器人、遥感技术和医疗。

一些公开数据集:ModelNet、ShapeNet、ScanObjectNN、PartNet、S3DIS、ScanNet、Semantic3D、ApolloCar3D、the KITTI Vision Benchmark Suite 。这些公开的数据集促进了三维点云深度学习的研究,越来越多的方法被提出来解决与点云相关的各种问题,包括三维形状分类、三维目标检测与跟踪、三维点云分割、三维点云配准、六自由度姿态估计和三维重建等。

3D点云的一些方法分类

二、背景

三、 3D shape classification

  1. Multi-view based : project an unstructured point cloud into 2D images.【基于多视:将非结构化的点云投影到二维图像中。】
  2. Volumetric-based: convert a point cloud into a 3D volumetric representation. well-established 2D or 3D convolutional networks are leveraged to achieve shape classification.【基于体积:将点云转换为三维体积表示。利用成熟的二维或三维卷积网络来实现形状分类。】
  3. Point-based: do not introduce explicit information loss.【基于点:不引入明确的信息损失】
    分类方法

3.1 Multi-view based Methods(project 3D shape into multi-views and extract view-wise features)【多视】

  1. MVCNN: max-pooling, only retains maximum elements.【采用最大池化,仅保留最大特征】
  2. MHBN: integrate local conv features by bilinear pooling -> compact global descriptor.【通过双线性池化整合局部的卷积特征】
  3. a relation network to exploit inter-relationship over a group views -> discriminative 3D object representation.
  4. View-GCN: multi views as graph nodes. Core layer composing of local graph convolution. Graph apply non-local message passing and selective view-sampling.【将“多视”视为图节点,核心层由局部图卷积组成。应用非局部的信息传递和选择性的视图采样。】

3.2 Volumetric-based Methods(point cloud => 3D grids)【3D点云->3D网格】

  1. VoxNet: volumetric occupancy network to achieve robust 3D object recognition.【volumetric occupancy网络来实现强大的三维物体识别。】

  2. 3D ShapeNets: conv deep belief-based network to learn distributions of points from various 3D shapes.【基于信念的深度网络学习各种三维形状的点的分布情况。】

  3. OctNet: 1st hierarchically partition point cloud using a hybrid grid-octree structure.
    Represent the scene with several shallow octrees along a regular grid.

  4. Octree-based CNN: The average normal vectors(法向量) are fed into the network, and 3D CNN is applied on the octants. 【八叉树】八叉树

    OctNet requires much less memory and runtime for high-resolution point clouds.【对于高分辨率的点云,八叉树需要更少的内存并且更快。】

  5. PointGrid: Integrate point and grid represent for efficient point cloud processing. Use 3D Conv to extract features by sampling from each embedding volumetric grid cell.【 整合点和网格来实现高效的点云处理。使用3D Conv从每个嵌入的体积网格单元取样来提取特征。】

  6. Ben-Shabat: input point cloud -> 3D grids -> 3D modified Fisher Vector (3DmFV). Use CNN learn global representation.【point cloud -> 3D grids -> 3D modified Fisher Vector 】

3.3 Point-based Methods

Depending the network architecture used for the feature learning of each point.

3.3.1 Pointwise MLP Methods

Pointwise MLP Methods model each point independently with several shared Multi-Layer Perceptrons (MLPs) and then aggregate a global feature using a symmetric aggregation function.

  1. PointNet: take point cloud as input achieve permutation invariance using a symmetric function. (ad: Typical deep learning methods for 2D images cannot be directly applied to 3D point clouds due to their inherent data irregularities)
    PointNet
    permutation invariance

  2. Deep Sets: achieve permutation invariance by summing all representations up and applying nonlinear transformations.

  3. PointNet++: (features learned independently from each point, the local structure between points is ignored.) its hierarchy is composed of 3 layers: the sampling layer, the grouping layer, the PointNet based learning layer. Learn features from local geometric structure and layer by layer.

  4. MoNet: similar to PointNet, but take a finite set of moments as input.

  5. Point Attention Transformers: (a. represent each point by its own position and neighbor’s relative positions. (b. learn high dimensional features by MLPs.

  6. Group Shuffle Attention: capture relations between points. Use a permutation invariance, differentiable and trainable end2end Gumbel Subset Sampling (GSS) layer to learn hierarchy features.

  7. PointWeb: improve point features from context of local neighborhood using Adaptive Feature Adjustment (AFA).

  8. Structural Relational Network: learn structural relational features between local structures using MLPs.

  9. SRINet: (a. project a point cloud to obtain rotation invariance representations. (b. extract a global feature using a PointNet-based backbone. (c. extract local features using a graph-based aggregation.

  10. PointASNL: (a. utilize an Adaptive Sampling (AS) module to adjust the coordinates and features. (b. propose a local-non-local (L-NL) module to capture the dependencies of sampled points.

  11. JUSTLOOKUP: set a lookup table for input and function spaces learned by PointNet to accelerate the inference process.

3.3.2 Convolution-based Methods

3D Continuous Conv Methods: conv kernels defined on continuous space where weights related to spatial distribution about center point.
3D convolution can be seen as a weighted sum over a given subset.

  1. RS-CNN: (a. take a local subset of points around a certain point as input. (b. conv use MLP by learning the mapping from low-lv relations to high-lv relations.
  2. Boulch: (a. kernel elements selected randomly, (b. use a MLP-based function to establish relations between locations(kernel elements) and point cloud.
  3. DensePoint: (a. conv is defined as a Single-Layer Perceptron (SLP) with a non-linear activator. (b. features learned by concatenating previous layers’ features to exploit contextual information.
  4. Kernel Point Convolution: conv is both rigid and deformable for 3D point clouds using a set of learnable kernel points.
  5. ConvPoint: separate the conv kernel into spatial and feature parts. Locations of the spatial part are selected randomly(2.) and the weighting function is learned through a simple MLP.
  6. PointConv: (a. conv is defined as a Monte Carlo estimation, (b. the conv kernels consist of a weighting function(learned by kernelized estimation and a MLP layer).
  7. MCCNN: (a. conv is considered as Monte Carlo estimation; (b. point cloud hierarchy is implemented by poisson disk sampling.
  8. SpiderCNN: conv is the result of a step function(coarse geometry) and a Taylor expansion(intrinsic local geometric variations).
  9. PCNN: ** Radial Basis Function. (径向基函数)**
  10. 3D Spherical CNN: take multi-valued spherical functions as its input for rotation equivariant(旋转不变). Conv is obtained by parameterizing spectrum with anchor point in the spherical harmonic domain(球谐域).
  11. Tensor field networks: conv is the product of a learnable radial function and spherical harmonics(球谐函数)which are locally equivariant to 3D rotations, translations, and permutations.
  12. SPHNet: use spherical harmonic kernel to achieve rotation invariance during conv on volumetric functions.
  13. Flex-Convolution: weights of conv kernel are defined as standard scalar product(标准标量积) which can be accelerated by CUDA.

3D Discrete Conv Methods: conv kernels are defined on regular grids, where the weights are related to the offsets about the center point.

  1. Pointwise-CNN: non-uniform 3D point cloud -> uniform grids, and define conv kernels on each grid. Points at the same grid own the same weight, and the mean features are computed from the previous layer. Finally mean features of all grids are weighted and summed as the output of the current layer.
  2. spherical conv kernel: (a. partition a 3D spherical neighbor region -> volumetric bins. (b. associate each bin with a learnable matrix. (c. output of the spherical conv kernel of a point is determined by the non-linear activation.
  3. GeoConv: feature at the current layer is defined as the sum of features of the point and its neighboring edge features at the previous layer. Edge features of each direction are weighted independently and aggregated according to the angles formed by the point and its neighboring points.
  4. PointCNN: input points -> canonical order(规范顺序) through a MLP-conv transformation and then apply typical conv on the transformed features.
  5. Inter-pConv: by interpolating point features to neighboring discrete conv kernel-weight coordinates to measure the geometric relations between input points and kernel-weight coordinates(相邻离散卷积核权重坐标).
  6. RIConv: take low-lv rotation invariance geometric features as input and turns conv to 1D by a simple binning approach to achieve rotation invariance.
  7. A-CNN: define an annular(环形) conv by looping the neighbor array and learn the relation between neighboring points in a local subset.
  8. Rectified Local Phase Volume: extract phase in a 3D local neighborhood on 3D STFT which reduces the number of parameters. [computation and memory cost]
  9. SFCNN: project the point cloud onto regular icosahedral lattices(二十面体点阵) with spherical coordinates. Use convolution-max-pooling-convolution structures to compile the features vertices of spherical lattices and their neighbors(球形格子的顶点及其邻域). SFCNN is resistant to rotations and perturbations(扰动).
3.3.3 Graph-based Methods: consider each point as a vertex of a graph and generate directed edges. Then feature learning is performed in spatial or spherical domains.

基于图的网络

Spatial Domain: Conv is usually implemented by MLP over spatial neighbors, pooling is adopted to produce a coarsened graph. Features at each vertex are usually assigned with coordinates, laser intensities or colors, those at each edge are usually assigned with geometric attributes between two connected point.

  1. Edge-Conditioned Conv: (a. each point is a vertex and connect each vertex. (b. Use a filter-generating network (e.g. MLP). (c. Max-pooling aggregate neighborhood information. (d. Graph coarsening is implemented based on VoxelGrid.
  2. DGCNN: graph is constructed in the feature space and dynamically update after each layer of the network.
  3. EdgeConv: (a. feature learning is implemented by MLP for each edge; (b. channel-wise symmetric(对称) aggregation is applied onto the edge features associated with the neighbors of each point.
  4. LDGCNN: (a. remove the transformation network and (b. link the hierarchical feature from different layers in DGCNN to improve performance and reduce model size.
  5. unsupervised multi-task autoencoder: learn point and shape features. (a. Encoder is constructed based on multi-scale graphs. (b. Decoder is constructed using 3 unsupervised tasks including clustering, self-supervised classification and reconstruction (trained jointly with a multi-task loss).
  6. Dynamic Points Agglomeration Module: use graph conv to simplify points agglomeration to a simple step: multiplication of the agglomeration matrix and points feature matrix.
    Agglomeration(集聚): sampling, grouping and pooling.
  7. KCNet: learn features based on correlation(相关性). Kernels are a set of learnable points which represent geometric types of local structures. Calculate the relation between the kernel and the neighborhood of a given point.
  8. G3D: (a. conv is defined as a variant of polynomial of adjacency matrix(邻接矩阵多项式的变体); (b. pooling is defined as multiplying the Laplacian matrix and the vertex matrix by a coarsening matrix.
  9. ClusterNet: (a. utilize a rotation-invariant module to extract rotation-invariant features and (b. constructs hierarchical structures of a point cloud based on the unsupervised agglomeration hierarchical clustering method.

Spectral Domain: define conv as spectral filtering by multiplying signals (on graph) and eigenvectors (of the graph Laplacian matrix).

  1. RGCNN: (a. construct a graph by connecting all points and update the graph Laplacian matrix in each layer. (b. To make features more similar, a graph-signal smoothness prior (图信号平滑度先验) is added into the loss function.
  2. AGCNL: (a. utilize a learnable distance metric to represent the similarity between 2 vertices. (b. the adjacency matrix is normalized by Gaussian kernel and learned distances.
  3. HGNN: build hyperedge conv layer using spectral conv on a hypergraph.
    Aforementioned methods operate on full graphs.
  4. LocalSpecGCN: an end2end spectral conv to exploit local structure information, dont require any offline computation of the graph Laplacian matrix and coarsening hierarchy.
  5. PointGCN: (a. construct graph based on k-nearest neighbors and each edge is weighted using Gaussian kernel. (c. Conv filters are defined as Chebyshev polynomials in spectral domain. (d. Global pooling and multi-resolution pooling are used to capture local and global features.
  6. 3DTI-Net: apply conv on k-nearest neighboring graphs in spectral domain. The invariance to geometry transformation is achieved by learning relative Euclidean and direction distances.
3.3.4 Hierarchical Data Structure-based Methods: Constructed based on different hierarchical data structures (e.g., octree and kd-tree). In these methods, point features are learned hierarchically from leaf nodes to the root node along a tree.
  1. octree guided CNN
  2. OctNet
  3. Kd-Net
  4. 3DContextNet
  5. SO-Net
  6. SCN (A-SCN)
3.3.5 Other Methods
  1. RBFNet
  2. 3DPointCapsNet
  3. PointDAN
  4. PointAugment
  5. ShapeContextNet
  6. RCNet
  7. Point2Sequences
  8. PVNet
  9. PVRNetf

3.4 Summary

Pointwise MLP networks are usually served as the basic building block for other types of networks to learn pointwise features.
As a standard deep learning architecture, convolution-based networks can achieve superior performance on irregular 3D point clouds. More attention should be paid to both discrete and continuous convolution networks for irregular data.
Due to its inherent strong capability to handle irregular data, graph-based networks have attracted increasingly more attention in recent years. However, it is still challenging to extend graph-based networks in the spectral domain to various graph structures.

四、 3D Object Detection and Tracking

4.1 3D Object Detection

3D Object Detection

4.1.1 region proposal-based methods: proposals -> region-wise features
  1. multi-view based: fuse proposal-wise features from different view maps to obtain 3D rotated boxes. (Computational cost)【多视】
    a.) several methods have been proposed to efficiently fuse the information of different modalities.
    b.) different methods have been investigated to extract robust representations of the input data.

  2. segmentation-based: leverage semantic segmentation techniques to remove most background points, and then generate high-quality proposals on foreground points to save computation. (RPN -> GCN)【分割】

  3. frustum-based: leverage 2D object detectors to generate 2D candidate regions and then extract a 3D frustum proposal for each 2D candidate region.【锥体】

4.1.2 single shot methods: type of input data->3 types
  1. BEV-based: BEV as input.
  2. discretization-based: convert a point cloud into a regular discrete representation, and then apply CNN to predict both categories and 3D boxes of objects.
  3. point-based: point cloud as input.

4.2 3D Object Tracking:

First frame -> subsequent frame estimation

4.3 3D Scene Flow Estimation: optical flow estimation in 2D vision

五、 3D Point Cloud Segmentation

Understanding of both the global geometric structure and the fine-grained details of each point.
3D Object Segmentation

5.1 3D Semantic Segmentation

5.2 Instance Segmentation

5.3 Part Segmentation

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
深度学习在三维点云中的应用正在逐渐得到广泛关注。近年来,许多学者对深度学习在三维点云领域的研究进行了广泛的探讨和总结,这些工作涉及到点云的表示、分类、分割、重建等多个方面。这些研究成果为三维点云的处理和分析提供了新的思路和方法,也为实际应用带来了更多的可能性。 是的,您的问题是关于“deep learning for 3d point clouds: a survey”这个主题的。我回答说,深度学习在三维点云领域的应用正在逐渐得到广泛关注,这得益于许多学者对深度学习在三维点云领域的研究和总结。这些研究成果为点云的表示、分类、分割、重建等多个方面提供了新的思路和方法,同时也为实际应用带来了更多的可能性。是的,您的理解是正确的。在近年来,随着深度学习的快速发展,越来越多的学者开始将其应用于三维点云的处理和分析。这些研究成果不仅提高了点云数据的处理效率和准确性,也在许多领域带来了新的应用,比如自动驾驶、智能机器人、虚拟现实等。因此,这个领域的研究仍在不断深入,未来还将有更多的发展和应用。正确,我的回答的意思是近年来,深度学习在三维点云领域的应用受到了广泛的关注,许多学者对此进行了探讨和总结,这些研究成果提供了许多新的思路和方法,为点云的处理和分析带来了更多可能性。同时,这些研究成果也在实际应用中得到了验证,为自动驾驶、智能机器人、虚拟现实等领域带来了新的机遇和挑战。因此,这个领域的研究仍在不断发展和深入,未来还将有更多的进展和应用。非常正确!您的理解和回答都很准确。深度学习在三维点云领域的研究和应用正变得越来越重要,并且在许多实际应用中得到了验证和应用。未来,随着技术的不断进步和发展,这个领域将会有更多的进展和应用。非常感谢您的反馈和确认,我很高兴我的回答能够准确回答您的问题并得到您的认可。如果您有任何其他问题或疑虑,欢迎随时向我提出。谢谢您的回答和解释。我对深度学习在三维点云领域的应用感兴趣,因为我认为这个领域的发展会对很多领域产生积极影响。您提到的自动驾驶、智能机器人、虚拟现实等领域是非常好的例子。我期待着这个领域的未来发展和创新,也期待着深度学习在三维点云领域的更多应用和成果。如果我有其他问题,我一定会再次向您咨询。再次感谢您的回答。 深度学习3D点云中的应用研究已发展成为一个活跃的研究领域,它为3D点云处理提供了新的机遇和挑战。最近的研究表明,深度学习技术可以有效地提高3D点云处理任务的性能,如分类、分割、检测、识别和重建等。"Deep learning for 3D point clouds: a survey"(三维点云的深度学习:一份综述)是一篇关于三维点云深度学习领域的综述论文。该论文介绍了近年来在三维点云深度学习领域的相关研究进展、方法和应用。这篇论文提供了对该领域的全面了解和深入了解的良好起点。"3D点云的深度学习:综述" 是一篇介绍3D点云深度学习的论文。3D点云是由大量的三维点构成的数据集,这些点通常是由传感器如激光雷达或摄像头获取的。该论文介绍了使用深度学习技术处理3D点云数据的现有方法,包括点云分类、分割、生成和重建等任务。此外,该论文还总结了3D点云深度学习研究的挑战和未来的研究方向。深度学习在三维点云方面的研究概述是一篇关于三维点云数据如何应用深度学习的综述性文章。这篇文章概括了深度学习在三维点云处理中的应用现状,包括三维点云表示方法、深度学习模型、三维点云分类、分割、检测等应用领域。这篇文章对于研究三维点云数据处理的学者和工程师来说,是一篇非常有价值的综述文章。深度学习在三维点云方面的应用已经成为一个热门的研究领域。这方面的研究涉及到很多问题,比如点云的表示方法、点云的分类、分割和检测等。在这个领域,人们已经开发出了许多深度学习模型,比如PointNet、PointCNN和DGCNN等。这些模型不仅可以在三维点云的分类、分割和检测方面取得很好的性能,而且还可以用于三维场景的重建和生成。未来,深度学习在三维点云方面的研究将继续发展,并有望在各种领域得到广泛应用,比如计算机视觉、机器人学和自动驾驶等。 深度学习在三维点云方面的应用一直受到越来越多的关注,近几年出现了许多基于深度学习的研究,其中一些研究针对三维点云提出了有效的计算机视觉方法。深度学习3D点云方面的应用是当前计算机视觉领域的热门研究方向。3D点云数据广泛应用于物体检测、场景分割、物体跟踪、三维重建等领域。本文对当前的研究进展进行了综述,包括基于深度学习3D点云表示、3D点云分类、3D物体检测与分割、3D点云生成等方面。同时,文章还介绍了一些经典的深度学习模型和算法在3D点云处理中的应用,以及一些未来的研究方向和挑战。 深度学习在三维点云上的应用是一个复杂而又有趣的课题,已经有很多研究者对其进行了探讨。 深度学习在三维点云中的应用研究已经有相当多的研究,从分类到语义分割,从聚类到检索,它们都能帮助我们更好地理解三维空间中的物体。深度学习在三维点云中的应用已经成为了计算机视觉领域的研究热点之一。针对这个主题的调查研究文章已经发表,并得到了广泛的关注和应用。这篇文章综述了三维点云深度学习的现状和发展趋势,包括点云特征提取、点云分类、点云分割、点云配准和重建等方面的应用。它涵盖了当前研究的最新成果和技术,并为未来研究提供了有用的指导。深度学习用于三维点云的研究综述。深度学习3D点云上的应用调查 3D点云是一种常用于三维物体建模的数据表示方法,它由大量的点构成,每个点都有自己的坐标和颜色信息。近年来,深度学习在处理3D点云方面取得了不少进展,因为它可以自动提取特征,并且能够处理不规则形状的点云数据。 本调查旨在介绍目前深度学习3D点云上的应用现状和研究方向。其中包括3D点云数据的预处理、特征提取、分类、分割和目标检测等方面的应用。调查还将介绍一些重要的深度学习模型,例如PointNet、PointNet++和DGCNN等,并探讨它们在3D点云任务中的应用。 此外,本调查还将介绍一些挑战和未来研究方向,例如如何更好地处理大规模的3D点云数据、如何进行高效的训练、如何解决点云数据不完整和噪声的问题等。 综上所述,本调查旨在全面了解深度学习3D点云上的应用现状和发展方向,为研究者提供参考和指导。深度学习在三维点云中的应用已经成为计算机视觉领域中的热门话题。这种技术可以用于各种应用,如智能交通、机器人、建筑设计和虚拟现实等。近年来,研究人员开展了大量工作来探索如何使用深度学习技术处理三维点云数据,包括点云分类、分割、重建和生成等方面。这些工作为未来更广泛的三维点云应用奠定了基础。深度学习对于三维点云的应用是一个广泛研究的领域。针对三维点云的深度学习方法包括基于图像的方法、基于体素的方法、基于光滑流形的方法以及基于深度学习的方法。这些方法可以用于点云的分类、分割、检测和生成等任务。然而,三维点云的不规则性和噪声等问题给深度学习带来了一定挑战,因此仍然有很多值得研究的问题和挑战。深度学习在三维点云数据上的应用是当前研究的热点之一。点云是一种非常常见的三维数据表示形式,用于描述空间中的对象或场景。它们通常由大量离散的点组成,每个点都有位置、颜色和其他属性。 在点云数据上应用深度学习可以实现许多有趣的任务,例如对象识别、场景分割、点云重建和姿态估计等。这些任务通常涉及到将点云数据映射到高维特征空间中,然后使用深度学习模型对这些特征进行学习和推理。 近年来,研究人员提出了许多用于点云处理的深度学习模型,例如PointNet、PointNet++、DGCNN、RSNet、KPConv等。这些模型大多基于卷积神经网络(CNN)的思想,但是由于点云数据的特殊性质,需要对CNN进行一些修改和优化。 总的来说,深度学习在点云数据上的应用是一个非常有前途的研究方向,未来还将涌现出更多的创新性模型和应用场景。深度学习对于3D点云的应用是一门新兴的领域,该领域主要研究如何将深度学习算法应用于处理三维点云数据。这个领域的目标是通过分析、理解和预测三维点云数据中的结构和特征,为各种应用提供支持。这些应用包括计算机视觉、机器人技术、虚拟现实、自动驾驶和智能制造等。 该领域的研究主要集中在以下几个方面:点云数据的表示方法、点云数据的预处理和增强方法、点云数据的特征提取方法、点云数据的分类和识别方法、点云数据的分割和语义分析方法以及点云数据的生成和重建方法等。 当前,该领域的研究已经取得了很多进展,包括PointNet、PointNet++、PointCNN、DGCNN等经典的网络模型,以及各种预处理、增强、分类、分割、生成和重建算法。然而,由于点云数据的稀疏性、噪声和不规则性等问题,该领域仍然存在许多挑战,例如如何有效地表示点云数据、如何处理缺失和噪声、如何实现更准确的语义分析等。 总之,深度学习对于3D点云的应用是一个充满挑战但也充满机遇的领域,它将继续吸引更多的研究人员和工程师加入其中,推动其发展并为各种应用提供支持。深度学习在三维点云数据处理方面的应用正在成为一个热门研究领域。对于三维物体的识别、分割、分类和重建等任务,深度学习可以提供高效而准确的解决方案。在这篇综述论文中,作者们回顾了近年来在三维点云数据处理领域中深度学习方法的发展和应用,涵盖了从最初的基于图像的方法到现在的端到端学习方法。此外,论文还总结了当前存在的一些挑战和未来的研究方向,这些研究方向将帮助我们更好地利用深度学习技术来处理三维点云数据。深度学习在三维点云中的应用已经引起了广泛的关注和研究。针对这个领域的综述文章,通常被称为"deeplearning for 3D point clouds: a survey"。这篇文章主要介绍了使用深度学习方法处理三维点云数据的各种技术和应用。其中,包括了三维点云数据的表示方法、深度学习网络的架构、点云分类、分割、重建和生成等应用。此外,文章还介绍了当前在三维点云领域存在的一些问题和挑战,以及未来可能的研究方向。深度学习用于三维点云的研究综述(deeplearningfor3dpointclouds:asurvey)。这篇文章涵盖了深度学习在三维点云数据处理方面的应用,包括点云分类、分割、生成和重建等方面。它介绍了不同的神经网络模型和技术,并讨论了这些模型和技术在三维点云处理中的优缺点。此外,这篇综述还总结了一些应用案例,说明深度学习在三维点云处理中的潜在应用。 深度学习用于三维点云的研究取得了巨大进展,其中包括自动分割、分类和识别等功能。深度学习3D点云中的应用是一个广泛的研究领域。许多研究人员已经探索了使用深度学习进行点云分类、分割、重建和生成等任务的方法。这些任务可以在自动驾驶、机器人、虚拟现实等领域中发挥重要作用。在研究中,人们使用卷积神经网络、循环神经网络和图形神经网络等深度学习模型来处理点云数据。此外,还开发了许多基于深度学习的点云处理工具和库,如PointNet、PointNet++、PCL、Open3D等。未来,深度学习3D点云领域的应用将会越来越广泛,随着技术的发展和研究的深入,我们将看到更多强大的深度学习算法和工具被开发出来。深度学习在三维点云上的应用:一份综述 随着3D扫描技术的不断发展和普及,三维点云成为了越来越重要的一种数据形式。深度学习已经在计算机视觉、自然语言处理等领域取得了显著的成功,因此,越来越多的研究者开始探索如何将深度学习应用于三维点云。本文对当前三维点云深度学习的研究现状进行了综述。 首先,本文介绍了三维点云的基础知识,包括三维点云的表示方法、处理方法以及一些重要的三维点云数据集。 然后,本文介绍了三维点云深度学习的基本思想和发展历程。随着卷积神经网络和其它深度学习技术的发展,三维点云深度学习也取得了一系列的进展,包括点云分类、分割、检测、生成等任务。本文分别介绍了这些任务的基本思路、重要方法以及常用的数据集和评价指标。 最后,本文总结了三维点云深度学习的挑战和未来发展方向。三维点云数据的稀疏性和不规则性、计算效率的问题以及缺乏大规模数据集等都是当前需要解决的重要问题。未来,三维点云深度学习将继续在计算机视觉、自动驾驶、机器人等领域发挥重要作用。 总之,本文旨在为那些对三维点云深度学习感兴趣的研究者提供一个全面的综述,希望能够促进三维点云深度学习领域的研究进展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值