本文系统地回顾了成年人跨越一生的大规模静息状态功能性脑网络的研究。从PubMed检索了1986年至2021年7月间发表的研究。在审查了2938条记录后,共纳入了144项研究。总结了11项网络测量结果,并使用修改后的GRADE方法评估了证据的确定性。证据高度确定,老年人在网络内的功能连接减少,而网络间的功能连接增加。老年人还表现出较低的分离度、模块化、效率和枢纽功能,并且在静息状态下的侧化和后向前的转移减少。高阶功能网络可靠地显示出年龄差异,而初级感觉和运动网络显示出更多变化的结果。网络变化的拐点通常是生命的第三或第四十年。对于网络内外改变的模式和动态连接的速度,发现了中等确定性的年龄效应。对于使用葡萄糖摄取进行的大脑信号强度(BOLD)变异性和连接性的研究提供了低确定性的年龄差异,但值得进一步研究。总的来说,这些与年龄相关的变化可能会导致老年人常见的认知下降。本文发表在Psychophysiology杂志,由于篇幅较长,本文分2部分呈现给读者。(可添加微信号19962074063或18983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群)。
1 引言
预计未来几十年,社区中老年人的数量和比例将显著增加。据估计,全球65岁及以上成年人口将从2019年的7.03亿增加到2050年的15亿(联合国,2019年)。老年人数量和比例的增加源于出生率和生育率的下降,以及全球平均寿命的增加(联合国,2019年)。
预计,人口老龄化将导致社会因认知下降而增加的负担。衰老是认知下降的主要风险因素,也是许多慢性病和神经退行性疾病的主要风险因素。因此,老龄化的人口可能会导致与年龄相关的疾病增加,这些疾病将对个人和社会造成重大的健康、社会和经济负担(联合国,2019年)。这些成本提出了重要的问题,即如何确保预期中老龄人口的增加伴随着最佳的认知老化,以及如何将与年龄相关的疾病及其相关的医疗保健和社会影响降至最低。
众所周知,随着年龄的增长,从分子到功能层面都会发生广泛的大脑变化。与年龄相关的大脑变化包括大脑结构、功能和代谢过程的改变,通常伴随着认知功能的下降(Salthouse,2019年;Smith等,2020年;Wu等,2011年)。与年轻人相比,老年人在许多认知领域通常表现出下降(有关综述,请参阅Brown & Park,2003年;Glisky,2007年)。这些认知领域已被证明在生命的第三十年达到高峰,然后逐渐下降(Harada等,2013年)。它们包括执行功能和注意力,如抽象思维、推理和解决问题的能力。相比之下,依赖于主要自动或熟练练习过程的任务受年龄影响较小,甚至可能在一生中略有增加,如词汇量和一般知识(Harada等,2013年)。言语和语言处理随年龄的增长相对稳定(Salthouse,2019年),尽管由于处理速度的普遍降低,老年人的处理时间可能更慢。总的来说,老化过程中看到的认知变化可能会对老年人的日常功能和生活质量产生广泛的影响。
1.1 大脑作为一个网络
理解大脑复杂、多层次的结构和功能已经是科学探究的领域多年,并导致了多种描述皮层组织的方案。早期的方法提供了对大脑区域功能专业化的洞见,以及随着局部神经元变化发生的与年龄相关和退行性变化。然而,很快就变得明显,大脑区域的功能也与它们与其他区域的连接性有关(Genon等,2018年)。
在过去的二十年左右,将大脑建模为一个复杂网络的研究数量迅速增加,这个网络由单元(例如,大脑系统、区域、亚区域、神经元)组成,通过结构连接性、功能连接性或两者连接(Damoiseaux,2017年;Liao等,2017年;Wig,2017年)。在这项研究中,“功能连接性”通常被定义为空间上远离的神经生理事件之间的时间依赖性(Shen,2015年)。大量的研究导致了这样的理解:大脑中的通信是根据拓扑结构组织的,这种拓扑结构结合了局部信息处理和跨功能相互作用区域网络的全球信息整合。这种功能属性的结合使得跨多个时空尺度的复杂、同步动态成为可能(Fornito & Bullmore,2015年;Sala & Perani,2019年)。
在神经影像领域,“网络”这个术语通常用来指一个在静息状态或执行任务时具有一致相关活动模式的体素或大脑区域的组。网络的构建及其分析借鉴了“小世界”网络和图论的概念(Rubinov & Sporns,2010年;Sporns,2018年;Sun等,2012年;Wig等,2011年)。用于功能网络和图论分析的关键概念和度量,以及构成本综述基础的内容,在表1中定义,并在图1中描述。在图论分析中,大脑可以被建模为一组网络,由一组节点组成,这些节点代表系统的单元,边表示节点之间的相互作用(Liao等,2017年;Wig等,2011年)。节点可以是神经元、神经元群体或大脑区域,这取决于感兴趣的空间尺度,边代表连接节点的结构或功能连接性(Liao等,2017年)。在本综述中,我们关注大脑区域的大规模网络,涉及数十到数百个节点(跨越厘米级),以及涉及数千个节点(即1-2毫米的体素)的全脑体素级网络研究。
表1. 网络和图论的属性、定义和度量。
属性 | 定义 | 示例图测量 |
---|---|---|
功能连接性 | 神经生理事件时间序列之间的时间相关性 | 节点边的平均权重,例如,BOLD相关性或PET示踪剂摄取 |
路径长度 | 节点之间以边遍历的距离 | 平均最短路径长度是从特定节点到网络中所有其他节点的最短平均距离(以边遍历的方式),是一种整合度量 |
局部效率 | 网络内节点之间信息传递的效率 | 每个节点到其邻居的平均最短路径长度的倒数 |
全局效率 | 整个网络系统中信息传递的效率 | 系统中网络之间平均最短路径长度的倒数 |
模块化 | 网络被划分为不同社区的程度。网络内连接密集,相对于网络间连接稀疏。模块化网络在其节点中表现出多个不同子网络的“聚类” | 网络社区内连接(边)与随机分布在网络中的连接相比的比例,例如,ICA或阈值化相关性旨在反映模块化 |
分离 | 网络不同区域之间的划分程度。反映在密集互连的大脑区域组内进行专业化处理的能力。与模块化类似,但直接量化网络内与网络间连接 | 同一网络中节点之间的密集或强连接(高网络内连接)与不同网络的节点之间的稀疏或弱连接(低网络间连接)相结合,例如,聚类系数 |
聚类 | 同一网络中的节点彼此之间比与其他网络中的节点更相似 | 聚类系数是一个节点的邻居中有多少是彼此邻居的比例,是分离的一种度量 |
整合 | 反映多个大脑区域之间整合的程度。能够快速结合分布在不同大脑区域的专业化信息 | 整个网络中连接节点的最短路径的平均边数。较小的路径长度代表更大的整合。度量包括最短路径长度和节点度。也与全球效率相关,即作为平均最短路径长度的倒数 |
枢纽 | 具有高度集中连接和通过长距离连接彼此之间的强关系的节点。枢纽可以定义为具有许多重要连接的节点(是许多节点之间最短路径的成员),或者与(与)许多其他网络相关的节点 | 中心性度量,包括连接的数量(度)和权重(强度),以及网络内最短路径通过给定节点的情况。例如,参与系数度量不在节点自己的网络内或跨网络的连接。当节点间连接比随机预期的更密集时,它们形成“富集俱乐部”,作为高容量传输的“中转站” |
“小世界”网络 | 在信息处理中具有高水平的局部和全球效率,具有经济的“稀疏”布线成本。高分离和整合 | 在图论术语中,如果图的路径长度类似于随机图,且聚类系数远大于随机图,则该图是“小世界” |
图 1 描述了功能网络和小世界度量的示意图
(a) 较大的灰色圆圈代表图的网络(网络 1、2 和 3)。每个网络内的点是节点,线是边(静息状态网络中节点间的显著相关性);实线是网络内的边,虚线是网络间的边。黄色节点和边展示了显示网络内连接的网络。节点 a 的连接强度是与其连接的边的平均权重;局部效率是每个节点到其邻居的平均最短路径长度的倒数。红色边展示了红色节点 b 和红色节点 c 之间的最短路径。所有节点对的平均路径长度越短,全球效率越高。蓝色节点 d 表示省级枢纽(强烈连接同一网络内的节点);绿色节点 e 表示连接枢纽(连接不同网络的节点)。
(b) 模块反映了将较大网络划分为较小的“构建块”或社区,通常反映解剖上连接或功能上相关的区域。人脑显示出“小世界”特性,平衡了效率、物理连接成本和最大化拓扑价值之间的经济性权衡。在模块 4 中,网络为全球效率和整合处理布线,每个节点可能与网络内外的多个其他节点连接,最小化路径长度并优化全球效率。然而,这种拓扑结构由于系统中大量连接的数量,特别是远程连接,而产生高昂的布线成本。相比之下,在模块 5 中,网络布线以最小化成本和支持功能专业化,每个节点在拓扑和空间上都有网络内的近邻。然而,网络间缺乏拓扑上直接的连接或边限制了全球整合和效率。通过信息需要穿越大量不同网络节点间的远程路径或边,效率降低。相对于模块 4,模块 5 在分离(网络内连接更强或更密集,但网络间连接更弱或更稀疏)和模块化(系统中网络内连接的比例更高,或平均路径长度更长)方面也更高。
(c) 富集俱乐部网络由密集网络之间的功能连接表示(改编自 Cohen & D'Esposito, 2016; Wig, 2017)。
1.2 老化中的功能网络作为认知衰退的早期标志
尽管认知衰退通常被认为是老化的正常后果,但实际上它并非不可避免的后果(Salat, 2011)。虽然一些老年人到了60岁时就明显显示出认知衰退的迹象,但其他人在80多岁甚至更晚的年龄仍保持着优秀的认知功能,表现得和年轻人一样好甚至更好(Glisky, 2007)。更好地理解认知老化过程的异质性是一个重要的实证和临床问题,因为神经变化可能在明显的认知衰退和/或疾病症状出现之前几十年就开始发生(Chen, 2019; Coupé et al., 2019)。更好地描述正常老化和认知衰退的时间框架和轮廓可能提供延迟、减缓甚至逆转或预防认知衰退和疾病轨迹的机会。
将大脑概念化为一个多方面的网络提供了一个有用的框架,用于检查神经信息处理如何与认知和行为相关,以及它在老化和疾病中如何可能发生改变(van den Heuvel & Hulshoff Pol, 2010)。图论认为,网络的整合、分离和“小世界”特性之间的相互作用将对认知老化产生影响。在这个框架中,认知老化的异质性是涉及多个大脑区域和信息处理能力的网络互动的一个突现属性。网络内部和网络之间的连接可能随着时间、数量、强度、配置和效率的变化而改变,这些变化可能是学习、年龄或疾病状态的功能(Genon et al., 2018)。功能障碍可能源于连接区域的改变,导致在退行性疾病中看到的级联效应,或在“正常”老化中看到的更渐进的变化(Fornito & Bullmore, 2015)。随后可能会出现一系列既不适应又有补偿机制的复杂相互作用,根据潜在变化的时间、地点和规模,认知和行为的表现形式呈现出异质性(Fornito et al., 2015; Naik et al., 2017)。
功能网络连接的类型学也将决定与年龄相关的变化或损伤如何影响网络及其相关功能。对“富集俱乐部”网络枢纽(如执行控制或默认模式网络)的改变将对整个系统产生广泛影响。相比之下,对更局部或省级枢纽的改变将导致更具体的缺陷(Fornito et al., 2015)。例如,在对包含20,000名受试者和26种脑疾病的大型磁共振成像(MRI)数据库的元分析中,Crossley等人(2014)发现,对白质“富集俱乐部”网络枢纽或其远距离边的干扰,特别可能降低整个系统的全局效率,并对整个网络的通信至关重要。
老化中大脑网络改变的个体差异也可能由疾病过程中的共享途径介导。例如,大脑网络功能的改变和认知衰退的增加风险已与代谢性疾病(如糖尿病和胰岛素抵抗)相关联(Akintola & van Heemst, 2015; Arvanitakis et al., 2016; Bello-Chavolla et al., 2019; Ekblad et al., 2017)。大脑内的血流是神经元功能和认知的核心因素,随着年龄和某些疾病的变化而变化。随着年龄的增长,动脉硬化、神经血管解耦和血脑屏障损伤可能影响大脑血流动力学和局部灌注(Kalaria et al., 2019)。老化和疾病共享途径在功能性大脑网络变化中的潜在作用及其对认知老化研究的影响将在第4.5节中更详细讨论。
1.3 静息态功能网络对理解认知老化很有价值
有研究表明,人类在清醒时的大半时间都处于非特定任务导向的认知状态(Lurie et al., 2020)。1995年,Biswal等人发表了一项关于静息状态大脑的开创性神经影像学研究。最初预测,记录的神经活动将主要是随机的,因为它不是针对特定任务的。然而,Biswal等人发现,已知具有共享功能属性的大脑区域之间存在同步性(也见Biswal et al., 2010)。在接下来的二十年中,研究静息状态下大脑活动的连通性成为了理解大脑网络结构和功能的主要方法之一(Mill et al., 2020)。大量研究表明,大脑区域间在多个尺度上的静息状态波动至少部分源自自发的神经活动。现在也已经确立,静息状态下的大脑活动组织成功能性静息态网络,这些网络由其时空配置和功能角色定义(Beckmann et al., 2005; Calhoun et al., 2008)。
静息态分析相对于任务分析的一个重要优势是,它避免了需要理解行为、认知策略或表现在不同组之间的反应和差异源,特别是在表现可以由多种认知机制支持的情况下(Rugg, 2016)。尽管如此,静息态功能连通性的生态和认知相关性一直受到质疑。因此,该领域还广泛研究了在执行认知任务时功能连通性的年龄差异(Campbell & Schacter, 2017)。关于任务相关功能连通性的详细回顾超出了本文的范围(见Lurie et al., 2020)。值得一提的是,研究表明,静息态功能连通性模式通常与认知任务激活模式相似,共享方差高达80%(Cole et al., 2014, 2016;也见Chan et al., 2017),并且功能连通性模式在任务中相对稳定,相似性估计值在r = 0.5到r = 0.9之间(Lurie et al., 2020; Medaglia et al., 2015)。这表明,静息态的功能网络架构可能至少反映了一些认知任务表现期间活动流动的“地图”或“回路”。这种共享回路支持了研究静息态功能连通性作为更好理解认知老化的手段的重要性(Cieri & Esposito, 2018; Ferreira & Busatto, 2013)。
1.4 静息态功能网络与认知老化理论
在系统地回顾文献时,我们还将发现与已提出的用于解释老化中功能网络差异的理论联系起来。这些理论包括去分化假说和补偿假说(Grady, 2012)。这些假说最初是为了解释年轻人和老年人在任务表现和任务相关大脑活动方面的差异而提出的。然而,如上所述,补偿和去分化假说很可能适用于静息态功能连通性,因为在任务相关处理中涉及的相同功能架构也适用于静息状态。
去分化描述的是在执行任务时参与的网络中功能专业化的丧失(Cabeza & Dennis, 2012; Park et al., 2004; Rajah & D'Esposito, 2005)。去分化是由大脑区域更为分散、非特定的招募所支撑的(Fornito et al., 2015)。它可以反映网络系统中结构上不同组成部分提供给定输出的相同贡献的能力,提供功能性“可塑性”以及可能对干扰或损伤的补偿(Fornito et al., 2015)。
老化中的补偿假说认为,与年轻人相比,老年人能够在一些大脑区域招募更高水平的活动,以补偿其他区域的功能缺陷。补偿相关的神经回路利用假说(CRUNCH; Reuter-Lorenz & Cappell, 2008; Schneider-Garces et al., 2010;但见Jamadar et al., 2010)提出,老年人即使在相同的认知需求水平上,也会招募比年轻人更高水平的神经资源。如下所述,这种在老年人中增加的神经活动通常在大脑的前额区域在静息和任务表现期间都可以看到。
协调动力学理论(Tognoli & Kelso, 2014)提出,当人们关注刺激或进行认知和行为任务时,大脑网络会短暂连接。在协调动力学理论中,“亚稳态”是一个核心概念。亚稳态指的是人脑整合多个功能部分并以协调的方式产生神经波动的能力,为认知功能和行为提供基础。协调动力学理论认为,大脑区域表达其个体专业化功能(分离、模块化)的倾向与全局耦合和协调多重功能的倾向共存。因此,亚稳态反映了整合和分离之间的平衡,网络内的信号变异性使得整合和分离之间的动态转换成为可能(Naik et al., 2017; Nomi et al., 2017)。
认知老化的另一个理论焦点集中在神经资源招募和部署的整体效率上,有时被称为“神经重用”理论(参见Anderson & Finlay)。其中一个理论,老化和认知的支架理论(STAC; Reuter-Lorenz & Park, 2014),认为通过网络重组招募额外的神经资源为保持认知功能提供了基础,以应对随年龄增长而出现的结构和功能减退。根据支架理论,去分化和补偿是同一枚硬币的两面(Naik et al., 2017),而亚稳态网络动力学是受模块化结构连接限制的功能性大脑互动的结果。换句话说,老年时期的网络去分化可以被视为对大脑底层结构和功能“支架”变化的一种补偿(Naik et al., 2017)。
认知储备理论(Stern, 2002)认为,功能性大脑架构可能支持认知表现,即使面对其他与年龄相关的大脑变化,包括结构性大脑变化。生活经历、教育和体育活动等因素被认为可以增加储备,尽管这些效应背后的生物学过程仍然大部分未知且存在争议(Perneczky, 2019; Varangis et al., 2019)。证据表明,拥有丰富认知储备的老年人即使在显著的大脑变化存在的情况下,也能够通过补偿来维持其整体认知表现。
大脑区域的功能侧化是众所周知的,左半球主要参与语言、分析和逻辑功能,而右半球则与非言语视觉空间、直觉和感官任务有关(Agcaoglu et al., 2015)。此外,感觉运动皮层在静息状态下的功能连接性比前额和颞顶区域之间的连接性更强(Zuo et al., 2010),这被认为是一种进化上保留的机制,支持快速和高效的信息处理(Chen, Xia et al., 2019)。已发现侧化程度随年龄的不同而有所差异(例如,Agcaoglu et al., 2015)。与年轻成年人相比,老年人更频繁地招募参与执行功能的前额皮层区域。这些侧化和前额招募模式被描述为老年时期的半球不对称性减少(HAROLD)和老化中的后-前转移(PASA)(参见Cabeza, 2002; Davis et al., 2008, 2012; Spreng & Turner, 2019,对这些理论的综述)。尽管HAROLD和PASA是为解释老化中的任务相关变化而提出的,但研究也表明它们在老化的静息状态研究中的相关性。关于HAROLD和PASA在整个成年生命周期中的证据评估将在第3.8节中进行回顾。
1.5 当前综述的范围
本文的目标是系统地回顾成年人整个生命周期中大规模静息状态网络功能的成像文献。这种新颖的综合来自于PRISMA系统回顾方法和网络测量的广度,这在老化中的静息状态功能连接性研究中之前尚未进行过。我们旨在解决以下问题:在静息状态下,成年人在网络内部和网络之间的静态和动态功能连接性、功能网络的局部和全局效率、网络分离、整合、模块化和枢纽结构、半球间以及大脑前后区域的拓扑连接模式是否存在年龄差异;以及基于正电子发射断层扫描(PET)成像的“代谢连接性”。
大脑中的氧气和葡萄糖是大脑生理和功能的核心因素。它们也是两种广泛使用的神经成像方法,即MRI和FDG-PET成像的基础。有关这些方法生理基础的详细综述,请参考例如(Chen, 2019; Cipolla, 2009; Grayson et al., 2013; Mergenthaler et al., 2013)。可以说,我们对健康和疾病中大脑连接性的理解的许多进步都来自使用MRI和PET成像的研究。MRI已被广泛用于研究静息状态的功能连接性,因为它提供了精细的空间分辨率和适度的时间分辨率(现在可以通过快速成像技术如多带采集获得亚秒级分辨率;Feinberg et al., 2010, Feinberg & Setsompop, 2013;参见Risk et al., 2021关于静息状态多带fMRI)。FDG-PET也被用于识别特定的葡萄糖代谢模式和大脑区域的“代谢连接性”。这两种成像方法也有局限性,可能为老龄化人群的研究带来挑战,这将在下文进一步讨论。
2 方法
2.1 研究类型和参与者
我们从PubMed上检索了1986年至2021年间发表的成年人整个生命周期中大规模脑网络功能的研究,遵循PRISMA 2020声明(Page et al., 2021)。识别、筛选和选择过程总结在图2中。我们纳入的研究对象是年龄在18岁至至少70岁之间的成年人。在某些研究中,参与者的年龄延伸到80多岁。如果只研究老年人,但涵盖了从1940年代或1950年代至少到1970年代或1980年代的三个十年的生活,也被纳入。
2.2 搜索策略
搜索标准基于以下关键词和术语的组合:功能连接、静息状态、静息状态连接、大规模网络、脑网络、内在网络、功能网络、功能性大脑、大脑系统、功能架构、功能组织、功能性磁共振成像(fMRI)、磁共振成像(MRI)、静息状态fMRI、代谢连接、同时PET、多模态PET、功能性PET、fPET;以及年龄、衰老、寿命、与年龄相关、老年人。从检索到的参考文献中引用的额外论文也被识别。如果研究发表在经同行评审的英文期刊上,并使用了人类受试者,则被纳入。
2.3 排除标准
如果论文的唯一重点是单一脑区域或相关的认知领域(例如,执行、注意、视觉、前额、运动区域),则被排除。在扫描仪中执行任务时检查连接性的研究,或有痴呆症的受试者的研究被排除,除非它们还包括了静息状态条件和健康队列,且年龄差异单独报告。灰质和白质结构连接性的论文被排除,除非它们还单独报告了静息状态的功能连接。疾病状态(包括发育障碍、痴呆症、癫痫在内的精神障碍)、训练和干预研究在搜索标准中被排除。
2.4 选择过程和纳入的研究
文献搜索检索到2938个独特记录。标题和摘要由两名评估员(HD & RDP)独立筛选和审查,以便纳入,将符合纳入标准的文章数量减少到339篇。在评估员之间发现差异时,对文章进行讨论和协调。结果,共有144篇参考文献被纳入系统评审。
2.5 网络测量
纳入审查的研究报告了表2中的一个或多个功能网络测量。研究被输入表格中,年龄差异的方向和性质在所有报告的测量中被分类,包括正面和负面。对每个测量,统计了评估年龄差异的研究总数和显示一致方向和模式的统计学显著年龄效应的研究数量。对所有静息状态网络的整体年龄差异模式进行了统计,对特定网络进行了统计,其中结果模式因网络而异,并有助于解释发现的异质性。统计也由两名评估员(HD & RDP)独立进行,并协调差异。
表2. 功能连接和图论测量的系统评审发现摘要表。年龄效应是研究的计数(%)。
a 发现的一致性被认为是高的,高阶和初级处理网络中看到了明显且一致的年龄效应,见第3.2.1节和3.2.2节。
b 100%的研究报告在高阶网络中降低了局部效率,见第3.7.2节。
c 当节点规模保持在90-114时,发现的一致性增加到83%的研究显示年龄的负面效应,见第3.4.2节和表S8。
d 对于动态的内部和网络间连接,尽管年龄效应的方向一致,但各研究的测量方式不同,见第3.6节。
e 对于后部-前部转移,“年龄效应的方向变化”表明对HAROLD和PASA模型的部分支持,见第3.5节。
2.6 证据的确定性
我们使用修改版的GRADE方法(Guyatt等人,2008年;Murad等人,2017年)对每个网络测量的证据的整体水平或强度进行了高、中、低的分类。GRADE最初是为了提供临床试验证据的总结框架和在做出临床建议时评估确定性而开发的。我们在评估现有文献中的证据强度时考虑了以下四个标准:(1)研究的数量和累积样本大小以及功能数据的数量;(2)来自研究样本和招募程序的偏见风险;(3)研究间发现的一致性;以及(4)整个成年生命周期的年龄比较的直接性。
对于每个网络测量,四个GRADE标准被评分为5(高)、3(中)或1(低),除了偏见风险,其评分被反转,以便更高的分数对应于低风险。评分由一位作者(HD)进行,由其余作者独立审查,任何差异都基于定义分数的切点进行讨论和解决。
扫描时间长度和收集的功能数据量是分析脑网络指标时的重要考虑因素。研究表明,至少需要五分钟的扫描时间才能产生中等可靠性(Van Dijk等人,2012年),将扫描持续时间增加到13分钟(Anderson等人,2011年)到15分钟(Birn等人,2013年)可以大大提高可靠性。我们报告了每项研究的扫描长度和收集的数据量(见表S1-S7),以及每个网络测量的平均值、最小值和最大值(表S8)。
我们在GRADE评估中考虑了研究数量、累积样本大小、平均体积和扫描长度的组合。要获得“高”评分,需要超过10项研究,累积样本量超过1000,并且在平均七分钟或更长的静息状态扫描中至少收集了200个平均体积(volume);要获得“中等”评分,需要6-10项研究,累积样本量500或以上,并且在5分钟或更长的扫描中至少收集了180个平均体积;要获得“低”评分,需要五项或更少的研究,累积样本量少于500,并且在少于5分钟的扫描中收集的平均体积少于180。
在发现的一致性方面,我们考虑了报告一致方向的年龄相关网络变化的研究百分比。要获得“高”评分,至少需要70%的研究报告了一致的年龄相关结果;要获得“中等”评分,需要51-69%的研究;要获得“低”评分,需要50%或更少的研究。
偏见风险评估是基于地理和公共数据库的多样性。考虑了国家和数据库的绝对数量及其多样性。需要超过15个独特的国家和数据库才能在偏见风险方面获得“低”评分;7-14个为“中等”;6个或更少为“高”。值得注意的是,研究中的参与者群体并不总是相互排斥,因为一些作者从同一开源数据库中获取样本(见补充表)。在“偏见风险”评估中考虑了包含相同数据集的循环性或偏见结果的风险。具体来说,对于被评为“偏见风险”低的任何网络测量(例如,内部和网络间的静态连接;分离、模块化、整合;侧化和后部-前部转移),没有单一数据库占据了至少32项研究中的13%以上;而在其他测量上(例如,动态连接和个体内BOLD变异性),多达三分之一的六项研究(50%)使用了相同的数据集,并被评为“偏见风险”高。
对于年龄比较的直接性,我们统计了包含成年人整个生命周期的参与者的研究数量。要获得“高”评分,需要10项或更多使用完整成年人生命周期样本的研究;4-9项为“中等”;3项或更少为“低”。
总GRADE评分是通过以下方式对四个标准得分进行加权计算的:研究数量和规模(0.25),发现的一致性(0.35),偏见风险(0.2)以及完整成年人生命周期的代表性(0.2)。每项测量的最终总GRADE评分可能在1到5之间。每项测量的证据确定性的最终GRADE评分基于以下阈值:1.0-2.5(低确定性),2.6-3.4(中等确定性),以及3.5-5.0(高确定性)。
头部运动是静息状态fMRI评估网络属性(包括基于图论分析的)中众所周知的混杂因素(Power等人,2012年、2013年;Satterthwaite等人,2013年;Yan等人,2013年)。我们报告了每项研究的作者用来纠正头部运动的方法(见附表S1-S6和S8)。所有作者在他们的预处理流程中包含了头部运动校正,而且在网络测量中,96-100%的作者采取了额外步骤来控制头部运动。这些额外步骤包括一个或多个组合:清除过度运动的体积(volume);从功能时间序列中回归出头部运动,独立成分分析中部分排除头部运动,以及在群体级分析中使用头部运动参数。由于采取的方法范围广泛,以及纠正头部运动的研究百分比非常高,我们没有直接将头部运动纳入GRADE评估。
3 结果
3.1 汇总表格和图表
表格2提供了系统评审结果的汇总,图表3则提供了这些结果的视觉呈现。表格2中的数据呈现了每个网络测量的详细研究数据的全球汇总,这些数据在补充表格S1-S7中,以及GRADE评估的表格S8中。由于一些研究报告了多个网络测量,因此表格S1-S8中列出的研究并不是相互排斥的。
图3:系统评审结果的视觉表示,关于表2中报告的网络测量。这些图表代表了每项测量的概念性而非量化的总结,用以说明跨越整个生命周期的相对模式(参见表1,了解指标及其测量单位的定义)。对于a和b面板,实线圆形端表示证据的高确定性;虚线圆形端表示中等确定性;虚线箭头端表示低确定性。对于b面板,大约45-65岁年龄段的空白区域表示较少的研究明确包括这些年龄(见表S8),并且没有测试成年期跨越的非线性关系。
3.2 老年人与年轻人相比在网络内功能连接性减少
大脑区域的“小世界”组织,其特点是局部聚类与高效的局部和全局信息传递,这种组织在生命的前几十年就已形成。关于早期年龄研究的详细回顾可以在(例如,Edde et al., 2021; Keunen et al., 2017; Liao et al., 2017)中找到。简而言之,“小世界”组织最早在妊娠30周时就已存在,并在生命的前两个十年中得到加强。网络也逐渐从孤立的局部区域转变为更分散的组织,在婴儿期,然后在早期成年期显示出更细微的整合变化。这些网络在生命的第三或第四个十年达到最稳定的时期(Edde et al., 2021),并成为一个覆盖更长距离的更互联的系统。这些网络倾向于遵循一种发展顺序,这被认为是对环境需求的适应(Fornito et al., 2015),从最初在儿童晚期巩固初级感觉和运动网络,到青春期晚期巩固高阶网络。
与年轻人相比,老年人在大规模静息状态网络的功能连接性上显示出差异。我们评估了老年人网络内连接性减少的证据强度为高。在评估成年年龄差异的50项研究中,有36项(72%)报告了在所有或部分分析的网络中,老年受试者的连接性较低,且没有任何增加的连接性出现在老年(详见表格S1)。13项研究(26%)报告了特定网络的年龄相关模式呈现增加和减少的不同趋势。当分别评估高阶和初级感觉及运动网络的年龄效应时,这些发现的一致性也增加了。
3.2.1 高阶和低阶网络显示出不同的网络内功能连接性轨迹
一些研究中网络内连接性结果的多样性可能反映了特定功能网络与年龄差异的不同轨迹。这些不同的轨迹在图4中有所展示。初级感觉(例如,视觉、听觉)和运动网络,以及下皮层和注意力网络,似乎受到年龄影响的程度比高阶功能网络(例如,默认模式、前顶叶、执行控制和带状盖网络(cingulo-opercular networks))更为多变。在评估网络内连接性的50项研究中,没有一项报告了随着年龄增长,默认模式网络内的连接性增加。此外,在单独报告默认模式网络结果的23项研究中,有22项(96%)报告了老年人网络内连接性较低;剩下的一项研究报告没有年龄差异(Jockwitz et al., 2017)。在单独报告其他联合网络的23项研究中,有21项(91%)报告了老年人网络内连接性较低,例如带状盖网络和前顶叶网络。
图 4 成年期跨度的网络连接矩阵差异。
该图表代表的是概念性而非量化的连接度量(相关性),用以说明成年期跨度的相对模式。对角线上的单元格显示了随年龄变化的网络内连接差异;非对角线上的单元格显示了网络间连接(初级处理包括感觉运动、视觉和听觉网络)。矩阵对角线上的渐变阴影单元格反映了研究发现中年龄效应的变化,要么显示没有年龄差异(白色),要么显示老年人相比年轻人增加的连接(黄色)。初级处理网络的非对角线单元格反映了与高阶网络增加连接(黄色)和与注意力及控制网络减少连接(蓝色)的混合模式,这是老年人相比年轻人的特点。
在初级感觉和运动网络中,研究结果显示了更多的变化性。在24项研究中,有9项(42%)报告在老年人的感觉运动网络中,网络内连接没有年龄差异或者呈现增加。在视觉系统的14项研究中,有3项(21%)报告了类似的结果。在情感网络的两项研究中,两项(100%)都报告了这种情况。此外,也有研究报告了感觉运动网络内整合的年龄相关减少。
3.3 老年人相比年轻人显示出增加的网络间功能连接
在比较年轻成年人和老年人之间的网络间功能连接方面,37项研究中有20项(54%)报告了老年人相比年轻人网络间连接的增加,没有报告任何连接减少的情况。5项研究(14%)报告了负面的年龄效应,11项研究(30%)报告了特定网络中增加和减少的年龄相关模式。
我们评估了老年人网络间连接增加的证据强度为高。这一评估反映了相对较多的研究数量、累积样本大小、直接测试成年期跨度的年龄差异,以及发现的相对一致性。当分别评估高阶和初级处理网络的年龄效应时,发现的一致性也有所增加。
3.3.1 高阶和低阶网络显示不同的年龄轨迹,表现在网络间连接上
在所审查的37项研究中,关联网络间连接减少的情况相对罕见,只有两项研究报告了这种现象(Luo et al., 2020; Wen, Dong, et al., 2020)。有17项研究单独报告了默认模式网络,其中15项(88%)报告了与其他大型网络的连接增加。相比之下,有12项研究报告了与初级感觉、运动和注意力网络连接减少的网络,例如运动区域与其他静息状态网络之间(Allen et al., 2011; Geerligs et al., 2015; Hou et al., 2019; Luo et al., 2020; Wang et al., 2012; Zhai & Li, 2019)、唤醒网络与视觉、听觉和感觉运动网络之间(Hou et al., 2019; Monteiro et al., 2019; Onoda et al., 2012; Vij et al., 2018),以及默认模式、视觉、听觉和背侧注意力网络的子区域之间(Huang et al., 2015; Spreng et al., 2016; Viviano et al., 2017; Zhai & Li, 2019; Zonneveld et al., 2019)。随着年龄的增长,辅助运动区与左前岛叶皮层之间的连接降低也有报道(Li et al., 2015)。
3.4 功能连接的年龄差异轨迹是非线性的
有证据表明,静息状态功能网络连接的年龄相关差异轨迹是非线性的,通常随年龄呈现二次方(抛物线)模式。在八项研究中报告了这些非线性关系(见表S1),在不同的空间尺度上显示,在第三十年代出现网络内连接的拐点,而在第四十年出现网络间连接的拐点(Betzel et al., 2014; Cao et al., 2014; Chen et al., 2018; Luo et al., 2020; Vij et al., 2018; Wang et al., 2012; Wei et al., 2018; Zhai & Li, 2019)。例如,Wei et al. (2018) 发现,20至80岁的网络内连接遵循倒U形关系,从30岁左右开始下降,并从40岁左右开始加速。
在一项包含5967名年龄在13至72岁的大样本研究中,Luo et al. (2020) 发现年龄与网络相关性的不同模式。网络内连接线性减少,尤其是在视觉和默认模式网络中。默认模式网络与前顶叶网络之间的连接呈现正二次方(U形)关系,从第二个到第八个十年,连接水平在第四个十年达到最低。Luo等人指出,这种模式与成熟过程中的“后进先出”配置一致,其中后期成熟的高阶脑区对早期年龄相关衰退更为敏感。值得注意的是,Luo et al. (2020) 还发现年龄相关的结构网络变化的时序和模式与功能变化一致,这表明结构变化可能在一定程度上介导或调节衰老中的一些功能变化,与认知衰老的STAC理论一致。
3.5 网络的分离度降低,模块化减少,整合性增强
大脑网络模块将更大的脑系统划分为基本的“构建块”,这些构建块内部连接密集,而彼此之间的连接相对较弱(Sporns, 2017)。模块化也与功能组织的两个基本原则密切相关:分离和整合(Sun et al., 2012)。分离描述的是大脑皮层是异质的,可以根据功能和结构特性划分为区域性不同的皮层区域(Genon et al., 2018)。整合涉及到认知能力依赖于不同区域之间动态的相互作用和信息交换的概念(Genon et al., 2018)。模块内密集的连接增加了局部聚类,从而促进了模块内的功能专业化,而模块间稀疏(但不一定不存在)的连接优化了网络的路径长度,并为全局信息整合提供了基础(Chan et al., 2014)。
过度的整合或分离可能是有害的(见图1b)。过度的整合可能导致信息传输的低效,甚至快速传播疾病,而过度的分离可能导致网络互动减少(Wig, 2017)。从图网络的角度来看,尽管分离类似于模块化,但它不同之处在于它直接量化了网络中内部和外部网络连接的比例(Wig, 2017)。
前文提到,大脑网络的“小世界”特性在生命的前两个十年中出现并加强。在这一时期,结构和功能连接之间的一致性也在增强(Hagmann et al., 2010)。换句话说,结构和功能连接之间的相关性随着年龄的增长而增强,这表明白质连接在创造整个大脑的组织中扮演着越来越重要的角色。这个“可塑性”发展期为功能专业化和支持高阶执行功能及其他认知能力的连接提供了基础。它建立在髓鞘化的白质通路的“解剖背景”上(Baum et al., 2020)。功能网络在生命的前两个十年中经历了与结构网络相似的变化。结构和功能连接的精细化导致了一个更加模块化的系统,该系统平衡了低成本的神经资源和高效的信息传输(图1b和图5)。一个更加模块化的系统支持动态和高效的注意力和行为控制,与功能专业化保持一致(Baum et al., 2020; Edde et al., 2020; Keulers et al., 2019)。
图 5 提出了成年人生命周期中大脑网络的差异。
图 a 展示了图 3a 中的网络测量值在成年人生命周期中的变化。所有测量值在 GRADE 评估中的年龄效应均被评为“高”确定性,除了全局效率被评为“中等”。图 c 描述了人类大脑如何位于图 1b 中模块 4 和模块 5 的极端之间,并显示出“小世界”特性,在第四或第五个十年达到高峰,局部效率与全局效率相辅相成。局部的、短距离连接反映了节点之间通过短路径长度进行信息传输的能力,并由稀疏的长距离连接补充,这些连接需要更高的布线成本。在空间上遥远的大脑区域之间的拓扑直接连接预计会在灵活的功能和行为方面带来好处。该系统通过平衡内部和外部网络连接的强度或密度以及相对较短的平均路径长度,实现了模块化、整合和分离的平衡。如图 b 所示,生命的第三个十年左右的大脑网络,与第四和第五个十年(图 c)相比,显示出较低的局部和全球效率以及整合。与年轻成年人相比(图 b 和 c),老年人在图 d 中显示出降低的局部效率(邻近节点的路径长度增加)和全球效率(丢失长距离路径或平均路径长度更长)跨网络节点。例如,在图 c 中,从节点 a 到节点 b 的局部效率是通过仅跨越一个边的直接路径;而在图 d 中,从节点 a 到节点 b 的路径跨越了三个边(节点 a 到 c 到 d 到 b)。在全球效率方面,图 c 中从节点 a 到节点 h 的路径长度是通过三个边:节点 a 到 b 到 f 到 h;而在图 d 中,它是通过六个边:节点 a 到 c 到 d 到 e 到 f 到 g 到 h。老年人的内部网络连接强度也在图 d 中降低,与图 b 和 c 中的年轻成年人相比(图 d 中网络内部的较细黑线表示),而网络间连接增加(图 d 中与图 b 和 c 相比网络间的较粗黑线表示),导致了一个更少分离和更多模块化、整合的系统。(改编自 Bullmore & Sporns, 2012)。
3.5.1 老年人的网络分离度和模块化程度降低
模块化和分离是相关概念,都是衡量网络内节点之间分离程度的指标(Wig, 2017)。分离是计算内部网络连接与外部网络连接(强度或密度)的平均差异,相对于内部网络连接的平均值(Wig, 2017)。模块化是网络节点内连接(边)的比例,与连接在网络中随机分布的情况相比(Wig, 2017)。
在整个成年人生命周期中,内部网络连接的减少和外部网络连接的增加意味着网络演变为在老年时期更少的分离、更少的模块化和更多的整合。我们评估了与年龄相关的网络分离、整合和模块化变化的证据确定性为高(见表2)。在评估分离、整合或模块化的32项研究中,有30项(94%)显示了整合的增加,或分离、模块化或两者的丧失(详见表S2)。一项研究报告了不同网络的不同结果(Petrican et al., 2017),其中三个高阶网络(即前顶叶网络、突显网络、带状盖网络)的分离度降低,而外部处理网络(例如语言、皮层下)的分离度增加。另一项研究仅报告了分离度的增加,可能是因为研究的成年人年龄范围较为有限(平均年龄65岁,标准差12年)和大脑区域划分较高(90个区域)(Sala-Llonch et al., 2014)。
Chan等人(2014年)发现感觉运动和联合网络在年龄差异方面呈现出不同的分离模式。感觉运动网络包括手、视觉、口和听觉网络;而联合网络包括默认模式、前顶叶、腹侧和背侧注意、突显和带状盖网络。研究发现,感觉运动系统的分离度与年龄增长呈线性关联。感觉运动系统还表现出与其他系统(如视觉系统)的分离度随年龄的线性减少。相比之下,与联合系统和年龄之间发现了负二次方关系,分离度的加速减少的拐点大约在50岁左右。Han等人(2018年)和Pedersen等人(2021年)发现了年龄与网络分离度之间类似的非线性模式。
纵向研究表明,65岁及以上未获得大学学位的成年人在静息状态下的系统分离度低于受过大学教育的同龄人,且系统分离度预测了接下来10年内痴呆症严重程度的变化(Chan 等人,2021年)。社会经济地位也被发现与大脑功能网络组织有关。在35至64岁的成年人中,较低的教育和职业地位与静息状态系统分离度的降低有关(Chan 等人,2018年)。综合这些结果表明,认知储备,如通过教育状况衡量的,可能影响成年人功能网络组织的轨迹。
与年轻成年人相比,老年人在静息状态下的分离度降低也被发现在任务状态下持续存在(Chou 等人,2013年;Crowell 等人,2020年;Geerligs 等人,2012年、2014年;Tsvetanov 等人,2018年)。例如,在n-back任务中,老年人在休息时识别的模块组成在任务中的变化比年轻成年人更多,尤其是在较高的任务要求下(Gallen 等人,2016年)。老年人在所有任务要求水平上都招募了额外的模块间连接,而年轻成年人只在任务要求最高时这样做。这与认知补偿的 CRUNCH 模型相符,即老年人在所有认知需求水平上都招募了比年轻成年人更多的区域(Reuter-Lorenz 和 Cappell,2008年;Schneider-Garces 等人,2010年)。
有13项研究报告了静息状态网络的模块化测量。所有(100%)研究都报告了老年人的减少;即,集中连接的程度或长距离连接的强度减少(详见表 S2)。例如,Meunier 等人(2009年)从年轻(平均24岁)和老年(平均67岁)参与者的 fMRI 数据中提取了90个皮层和皮下区域。他们发现,在年轻组中是单一、连贯区域的一些模块在老年组中分裂成两个模块。基于其高度的模块间连接,前额-纹状体模块似乎对于协调年轻组的信息传输至关重要。然而,在老年组中没有发现相同的模式,同样的功能角色似乎被后部模块接管。
3.5.2 老年人的网络枢纽模块化程度较低
枢纽是一种特殊类型的节点,它们具有许多重要的连接,并且彼此之间有着强烈的关系。由于它们在网络中的连接数量和位置,它们也是不同大脑区域间通信的关键参与者。枢纽通常通过长距离神经通路相连,以便在空间分布的区域中维持信息整合和协调,优化神经资源成本与信息传输效率之间的平衡(Liao 等人,2017年;Sporns,2018年)。连接枢纽与网络其余部分的边的空间距离也被认为反映了它们的“布线成本”。枢纽具有高速的脑血流、有氧糖酵解和氧化葡萄糖代谢率,表明它们是“生物成本高昂的”,尽管与信息处理整合的高价值相关联(Crossley 等人,2014年)。
在儿童晚期,已经明显存在一个成熟的功能性枢纽架构,并在成年早期随着枢纽与其他区域之间的连接增加而加强(Hwang 等人,2013年)。与功能性枢纽架构的成熟相伴随的是白质枢纽和结构性大脑网络影响的变化,为信息传输提供了“支架”(Puxeddu 等人,2020年)。在正常衰老中,这通过枢纽间和枢纽内的拓扑重组表现出来,认知正常的老年人与年轻成年人相比,通过额叶和顶叶枢纽的连接减少(Ash 和 Rapp,2014年;Wu 等人,2012年;Zhu 等人,2012年;Zimmermann 等人,2016年)。减少的“枢纽性”也预测了衰老中网络间通信效率是否受损(Betzel 等人,2014年)。
一些枢纽区域在整个网络组织中扮演关键角色,并参与网络中多个社区。这些枢纽及其连接被称为“富集俱乐部”,因为它们比连接度较低的节点更密集地相连(见图1c)。它们倾向于彼此强烈地互联,形成“富集俱乐部”。因为“富集俱乐部”连接连接着空间分布和遥远的枢纽节点,它们的整体网络成本很高,但这种高成本被它们对高效通信的不成比例的大贡献所抵消(van den Heuvel 等人,2012年)。与年轻成年人相比,老年人显示出减少的枢纽结构,包括“富集俱乐部”连接(Cao 等人,2014年)。这些网络显示出负二次方的“富集俱乐部”连接模式和随年龄线性减少的模块化组织,主要集中在额叶、顶叶和枕叶的枢纽。因为这些网络在灵活分配资源以产生目标导向行为方面处于中心位置,它们可能对认知衰老过程产生相对全球性的影响。事实上,这些枢纽支持高阶执行功能,这些功能需要在大脑中高度整合信息,并已被证明能区分个体的执行功能、智商和行为(Finn 等人,2015年;Miranda-Dominguez 等人,2018年)。
3.6 功能连接、模块化、隔离、整合和枢纽功能的年龄差异:总结与含义
综合考虑关于(a)网络内部和网络间连接;(b)隔离、模块化和整合;以及(c)生命周期中枢纽差异的研究,支持这样一个观点:功能相关区域在发展过程中出现,在成年早期优化,并在老年时期恶化。这种功能差异的模式在图5中有所体现(比较面板C与面板B和D)。年轻成年人和老年人在休息时网络内部和网络间功能连接方面的差异可能驱动功能网络通信的差异,并可能导致老年人常见的认知性能下降,特别是在高阶过程中,如执行功能。由于执行功能在人类认知和行为中的广泛作用,它是大脑衰老理论的核心,如前额叶衰老假说(Morrison & Baxter,2012)。老年人往往表现出较少的灵活思维,如形成新概念和抽象思维、反应抑制,以及言语和数字推理(Darowski 等人,2008年;Harada 等人,2013年;Salthouse,2019年;Wecker 等人,2000年)。这些执行功能的变化首先出现在生命的第五个十年的成年人中(Singh-Manoux 等人,2012年),与系统综述的发现一致,即功能网络连接的变化在第四和第五个十年达到拐点。
发现老年人与年轻人相比,在网络间连接(第3.2节)和整合(第3.3节)方面增加,这与“去分化”假说(Cabeza & Dennis,2012)相符,即老年人在休息时激活更多的神经系统,反映了更分散、非特异性的大脑区域招募。第3.3节回顾的文献也支持STAC理论,表明随着年龄的增长,隔离的丧失影响大脑区域在休息(和任务)期间的整合方式。这些发现也与执行功能的下降但“正常”衰老中主要信息处理的维持一致,这意味着衰老中存在一种潜在的补偿机制,以支持更高级别的认知功能(Singh-Manoux 等人,2012年)。与年龄相关的去分化也出现在感知处理区域,并可能推动在处理流程下游招募更多神经资源的需求(Goh,2011年)。相比之下,如视觉信息处理等主要感觉和运动功能,受益于相邻区域之间的集群连接。由于这些节点连接良好,信息交换更加隔离,且网络对年龄相关的连接中断更具有韧性(Geerligs 等人,2015年;Song 等人,2014年)。
第3.3节的结果还可能有助于解释认知衰老轨迹在个体间的异质性。认知和行为取决于大脑区域之间发送和接收的信息流(Genon 等人,2018年),网络整合和隔离之间的相互作用调节这种流动。如前所述,模块内部和模块间的连接可能会在强度、配置和数量上发生变化,并且可能随着学习、年龄或疾病状态的变化而随时间变化。一些模块可能相对稳定(例如,主要感觉和运动),而其他模块可能变化较大(例如,联合区域),连接和断开(Medaglia 等人,2015年)。与此同时,枢纽在生物上成本高昂,并且随着衰老中代谢活动的减少而退化(Arneman 等人,2018年;Dai 等人,2015年;Liang 等人,2013年;Tomasi 等人,2013年)。特别是“富集俱乐部”网络枢纽的改变,如默认模式网络或执行控制网络,包括它们的远程连接,减少了大脑区域间的通信,这是快速有效的高阶认知功能的先决条件。这种复杂的相互作用将至少部分地决定年龄相关的功能变化在认知上的不同表现。这与表明依赖于主要自动或熟练过程的任务受年龄影响较小,而高阶功能受影响较大,或者甚至在整个生命周期中略有改善的结果一致。(Grady, 2017; Harada et al., 2013).
3.7 老年人的局部和全局效率较低
3.7.1 大脑为“小世界”局部和全局效率“布线”
具有“小世界”特性的大脑网络在信息处理中平衡了高水平的局部和全局效率,同时具有经济的“稀疏”布线成本(Bullmore & Sporns,2012;见图1b)。通过将大脑划分为空间上接近的局部模块来实现成本最小化,每个模块内的节点具有短的平均路径长度连接,增加信号传输速度并促进局部效率(Barbey,2018)。局部效率由全局效率补充,后者反映了在最短可能路径长度上任意两个节点之间的信息传输能力。对局部和全局效率的互补需求创造了对产生更高“布线成本”的长距离连接的需求。因此,通过平衡大脑组织上的竞争约束来实现高效系统,要求降低局部专业化的布线成本,并增加连接距离以促进全局、系统范围的功能(Barbey,2018)。
需要大脑高度信息整合的高阶执行功能从长距离连接的全局效率中受益。图论分析表明,老年与长距离连接的功能连接减少和短距离连接的更高连接性相关(Sala-Llonch 等人,2014年)。长距离连接的全局效率在前额顶叶网络中尤为重要,并已被证明可以区分个体的执行功能、工作记忆、任务切换和普遍智力(Finn 等人,2015年;Hakun 等人,2015年;Miranda-Dominguez 等人,2018年;Rypma 等人,2005年;Santarnecchi 等人,2014年;Stanley 等人,2015年)。处理速度通常在老年人中也会降低,至少部分原因是由于需要穿越更多节点,导致更大的神经活动(网络间连接)但处理效率更低、更慢。
3.7.2 老年人显示大规模网络的局部和全局效率降低
与第3.2节中提到的老年人网络内连接减少一致,与年轻人相比,老年人的局部效率损失(见表2)也被一致报告。九项研究中有七项(78%)包含局部效率指标,报告老年人与年轻人相比在所有或大多数研究的网络中效率较低(详见表S3)。两项研究(22%)报告了因网络而异的结果,两者均报告老年人与年轻人相比在高阶网络(例如,前额顶叶、默认模式、带状盖网络)中的局部效率较低,但在感觉运动和视觉网络中效率较高(Geerligs等人,2015年;Song等人,2014年)。还有一些证据表明,年龄与局部效率之间存在倒U型关系(Cao等人,2014年;Xie等人,2020年),效率在生命的第三或第四十年左右达到高峰(见图3a)。
局部和全局效率的整体GRADE评分接近“中等”和“高”评级的边界(即,局部效率为3.7分,全局效率为3.5分;见表S8)。鉴于100%的研究报告了随年龄增长在联合网络中局部效率的损失,我们评估这些网络的发现一致性为高。与局部效率相比,全局效率的年龄组效应方向的一致性较低。13项研究中有7项(54%)报告老年人的全局效率低于年轻人;三项研究报告没有年龄差异(23%);三项(23%)报告老年人效率更高。
全局效率与局部效率相比发现不一致的原因有几个。与局部效率相比,全局效率的老化相关效应被发现效应大小较小(例如,Chong等人,2019年;Varangis等人,2019年),因此可能更难检测。这一结论与我们的发现一致,即老化对局部效率的影响比对全局效率的影响更为稳健。
图像预处理的变化、节点规模(即,网络内节点的数量)和分区方法可能也影响了全局效率结果的一致性。研究表明,全局效率是对节点规模最敏感的图论度量之一,因为它可以改变节点之间边的数量和长度(Stanley等人,2013年;Zalesky等人,2010年)。此处回顾的研究使用的节点规模范围从90(例如,Onoda和Yamaguchi,2013年)到1204(Cao等人,2014年)不等。节点规模的变化将影响节点之间边的路径长度。事实上,当节点规模基本恒定时,结果是一致的。具体来说,在90至114个节点的规模下,六项研究中有五项(83%)发现老年人与年轻人相比全局效率降低(Achard和Bullmore,2007年;Chong等人,2019年;Hou等人,2019年;Li等人,2016年;Onoda和Yamaguchi,2013年;Sala-Llonch等人,2014年)。尽管这部分研究增加了发现的一致性,但只有两项研究涵盖了整个成年人的寿命。结合全局效率的整体GRADE评分处于“中等”和“高”评级的边界这一事实,我们建议需要进行额外的研究来探索全局效率和节点规模跨年龄差异的稳定性。
3.7.3 老年人网络效率:对认知表现和认知衰老理论的总结和启示
综合来看,系统性回顾的结果表明,“小世界”脑网络的局部和全局效率平衡在整个寿命中都存在,尽管它可能在生命的第四或第五十年达到高峰,然后下降。如图5所示,老年人显示出降低的局部效率(邻近节点的路径长度增加)和全局效率(丢失长距离路径或平均路径长度变长)跨网络的节点之间。效率的年龄差异可能导致老年人常见的执行功能、工作记忆和处理速度下降。
至少年龄与功能网络效率的一些差异可能是由解剖连接和能量需求的变化驱动的(Salat,2011年)。基于灰质体积的图论度量的结构效率变化已在老年人中纵向和横断面报告(例如,Wu等人,2012年,2013年),并报告解释了83%的年龄相关的执行功能减退(Fjell等人,2017年)。这些结构效率的变化也符合前面概述的“神经资源”和“支架”衰老理论。根据这些理论,神经通信的传输效率依赖于白质的完整性。与年龄相关的功能变化与白质变化相伴随,这导致全球网络整合能力的减少和全球效率的降低。效率的降低是通过改变信息需要在不同网络的节点之间流动的路径长度,以及白质全局和局部效率的减少来介导的,这为人脑中的效率提供了“支架”(Burzynska等人,2013年;Niu等人,2019年;Zhu等人,2015年)。随着年龄的增长,代谢效率和细胞变化也可能影响网络效率(Ramchandran等人,2019年)。