到目前为止,大多数人类神经科学研究都集中在描述局部神经活动或血流的静态模式的统计方法上。尽管这些模式常常在动态的信息处理概念下被解释,但统计方法的静态、局部和推断性质使得直接将神经影像结果与可信的底层神经机制联系起来变得具有挑战性。在这里,我们认为动态系统理论提供了一个关键的机制框架,用于表征大脑的时变特性及其在干扰面前的部分稳定性,因此,这种视角可以深刻影响对人类神经影像结果及其与行为的关系的解释。在简要回顾一些关键术语后,我们确定了神经影像分析可以采用动态系统视角的三个关键方式:从局部到更全局的视角转变,从关注静态神经活动快照转向关注动态,以及采用映射神经动态的“前向”模型的建模方法。通过这种方法,我们预见神经影像研究者将有充分的机会丰富他们对支持广泛大脑功能的动态神经机制的理解,无论是在健康状态下还是在心理病理情况下。本文发表在Network Neuroscience杂志。(可添加微信号19962074063或18983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,另思影承接白质高信号分割与分析业务,如感兴趣也可咨询)
关键词:功能性磁共振成像(fMRI)、动态、吸引子景观、神经科学、分支。
引言
理解人脑内部运作的复杂性是一项艰巨的任务。全脑神经影像学是减少我们对大脑工作方式不确定性的关键工具。但如果传统神经影像分析中固有的假设使我们误入歧途怎么办?在许多方面,神经科学相对来说还是准范式的(Kuhn, 1962),类似于达尔文的洞察之前的生物学领域,或者原子理论之前的化学领域。考虑到这一点,我们应该如何着手建模大脑呢?我们建议,动态系统的视角为科学家们提供了一条路径,打破传统的、静态的数据拟合统计程序所限制的零散进展。这种建模方法也非常适合于描述行为、情感和思想的产生的机制。我们认为,动态系统理论(DST)自然适合讨论神经和行为现象的时间方面,以及大脑内部以及大脑与外部现象之间的相互作用是如何随时间展开的。
自从认知革命以来,神经过程通常被描述为离散的“状态”、“符号”或“代码”的操纵(Brette, 2019)。这种方法使用的主要类比是“数字计算”的概念:大脑被认为是通过灵活地在不同状态之间重新排列来“处理信息”。这种方法自然导致了将大脑视为由不连续、独立的功能单元组成的马赛克的观点——考虑对杏仁核的过度简化的概念,即它专门用于处理“恐惧”(Pessoa & Adolphs, 2010)。这种策略为神经过程生成了一个“部件清单”,但很少仔细关注这些部件如何相互作用以调节整个系统的行为。此外,信息处理框架包含潜在的拟人化思维:编码、消息传递和沟通是依赖于社会互动的直观熟悉性的隐喻——它们的神经生物学基础通常未被明确阐述(Brette, 2019)。
与将大脑视为准独立功能单元或代理的马赛克视角相反,动态系统理论(DST)将神经现象框架化为由耦合微分方程控制的轨迹。这些方程自然倾向于因果和机械的解释,从而使得拟人化的隐喻能够转化为如兴奋和抑制等更简单的生物物理过程。尽管DST背后的数学研究有悠久的历史,非线性动态系统表现出的行为难以在没有模拟的情况下进行分析。计算能力的提升使得DST成为神经影像学中更易处理的工具。此外,DST建模框架使得可以模拟神经动力学,这些模拟既具有预测性又具有生成性:模拟的轨迹可以用来拟合特定的数据集,但也可以帮助研究人员超越现有数据,例如,通过促进不同范式和物种间发现的整合,以及贡献于实验设计。
对DST的全面调查超出了本综述的范围,但关键概念已在神经科学家容易获取的书籍中进行了深入描述。我们在这里将重点关注如何将这些思维模式与大脑的功能性和适应性账户相结合。我们将论证DST是一种透镜,能够清晰地聚焦那些通过信息处理框架的透镜看起来有些模糊的神经处理的某些方面,包括稳定性、灵活性、非线性和历史依赖性的重要性。动态描述模式特别适合描述人类和其他动物在不断变化的情境中追求生存目标的方式,这些方式既稳定又流畅。更具体地说,我们认为,由于能够全脑采样大脑动力学,人类神经影像学特别适合利用DST的概念。重要的是,在微分方程的表面复杂性和抽象性之下,DST使所有神经科学家都能够利用一种风格的思维来揭示因果和功能机制。
在本文的第一部分,我们概述了DST的关键概念,这些概念作为构建直观神经功能模型的基础。然后,我们将提出三种方式,通过这些方式,当前的神经影像技术可以与DST有效结合,从而为观察大脑创造一个强大的新视角。
通过动态系统棱镜看大脑
传统的大脑功能区分析使研究人员能够识别出统计上可靠的神经“拼图碎片”。这些方法让我们了解大脑区域或网络可能功能性地介导什么,但并不解释这种介导如何随时间展开,或更好地说,识别出的神经区域之间的协调互动如何体现为行为。我们的观点是,DST是拼凑这个大脑-行为拼图的理想框架,因为它强调了互动和时间(McIntosh & Jirsa, 2019)。此外,动态系统视角可能提出原则性的方法来重新构想精神病学概念(Durstewitz等人,2021)和用于描述行为的“心理学”术语,如“注意力”、“记忆”、“情感”和“认知”,以及某个区域的功能可能更好地被理解为网络层面的整合轨迹,而不是模块化和局部化的过程(Hommel等人,2019)。相反,一些局部区域的功能可能更好地被理解为对网络动态的影响,而不是心理学概念的术语。
动力系统理论(DST)描述了一个系统(如神经元、回路甚至整个大脑)随时间的变化。动力系统由其状态空间(或相空间)定义,该空间表征了系统可达到的配置。状态空间的维度指定了系统的可能动力学。例如,每个维度可以是神经元的放电率、体素的代谢活动或刺激的强度。在任何特定时间点,系统被理解为占据其状态空间中的一个点;轨迹是通过状态空间的路径,映射出每个维度随时间的变化情况(图1)。微分方程规定了系统从选定的起始点(初始条件)随时间演变的轨迹。
图1 状态空间概念概述。
(A) 如神经影像数据集中的大量多变量大脑活动记录,首先将数据投影到一个对所需数据特征敏感的状态空间中,可以使其更易于分析和可视化——例如,用主成分分析方差或独立成分分析不同信号。
(B) 上部面板:叉型分叉图显示了系统参数的变化,该变化将系统从单一稳定吸引子状态过渡到具有两个稳定吸引子(蓝线)和一个不稳定吸引子(红色虚线)的多稳态。
下部面板:从上面的单稳态和多稳态中,对相同的潜在能量景观进行了描述。
(C) 确定系统的吸引子景观为系统的动力学提供了参考,从而预测对扰动的不同反应。系统的外部输入可以视为对系统轨迹的扰动,或者对系统吸引子景观的变形。
DST使得能够简洁地描述具有共同定性特征的轨迹族。例如,如果一组轨迹都趋向于状态空间的某个特定区域,那么这个区域被称为吸引子(最简单的吸引子被称为固定点吸引子)。从状态空间的哪些部分系统发现自己被“吸引”到一个吸引子,形成了相应的吸引子盆地。这里的“盆地”术语暗示了山脉中的一个山谷——放在山谷的任何一个斜坡上的球都会滚向底部。即使在无法可视化的高维系统中,将状态空间理解为一种景观也是一个合理的类比。吸引子的概念提供了对稳定性的直观、机械性解释:处于吸引子中的系统可以被撞击或干扰,但只要系统保持在吸引子盆地内,它最终将回到盆地底部,就像大理石滚向浴缸底部一样。相比之下,排斥子是倒置的吸引子,因此类似于山顶或山脊:系统在排斥子上处于不稳定的平衡状态。
固定点的地形并不总是那么明确。实际上,固定点可能同时具有吸引和排斥的属性,如马鞍点,可以在地形上被认为类似于山口——在一个方向上不稳定(即,你可以很容易地沿着路径向后或向前移动),但在另一个方向上稳定(即,很难爬过两边的山)。像马鞍点这样的特征本质上增加了出现动态的潜在复杂性;然而,重要的是要指出,这些定性特征只有在提出系统的微分方程时才能被识别。这意味着将“吸引子”或“马鞍点”等术语分配给从数据派生的动态轨迹族,必须依赖于模型选择,不能直接从数据中推断出来。
动物所有可能的动机状态集合是吸引子景观(Deco & Jirsa, 2012; Shine, 2021)或“能量”景观的一个例子(尽管“能量”一词的使用基于数学类比,不必具备与能量相同的物理维度)。任何特定目标导向状态的吸引子盆地不应该太深:如果动物在寻找食物的过程中变得如此坚定,以至于不被捕食者的出现所打扰,那么它不太可能存活很长时间。因此,行为的灵活性要求某些刺激可以将系统从一个吸引子盆地推向另一个。换句话说,灵活的神经系统的轨迹可能会穿越状态空间中的排斥区域,因为这些区域处于进入附近吸引子盆地的临界点。另一个吸引子景观的例子是可以捕获注意力的感知目标空间(Rabinovich等人,2013)。对目标的专注、坚定的注意力可能对应于系统处于比邻近的其他盆地更深的山谷中,系统不容易被分心因素所动摇。同样,高易分心性应该对应于一个浅吸引子的景观。根据建模目标,DST可用于模拟单个心理结构随时间的变化(例如,愤怒;Hoeksma等人,2007),或心理状态如何在多个竞争心理状态的景观中转变,受到环境力量的冲击(Jirsa & Kelso, 2004; Riley & Holden, 2012; Tognoli & Kelso, 2014)。除了吸引子,还有更微妙的定性模式,如与瞬态动态相关的模式,可能需要来表征展示重复阶段和变异性或灵活性的轨迹(Rabinovich等人,2008; Rabinovich & Varona,2011)。
这些外部瞬时刺激可以用DST的语言来考虑:对于处于状态空间中的系统,要让系统逆着空间规定的方向移动,唯一的方法是通过干扰。事实上,判断一个干扰是“小”的,还是一个吸引子盆地是“深”的,取决于它们的相对规模,以及系统在吸引子盆地内的确切位置。对于占据给定吸引子最深点的系统,低于某个规模的干扰永远不会将系统推出吸引子盆地。如果系统已经被干扰,以至于接近分隔一个吸引子盆地和相邻吸引子盆地的脊,一个相对较小的推动可能就足以破坏稳定性(图1C)。在注意力的情况下,这意味着,无论注意力状态多么集中,总会有一个分心因素或分心因素的组合具有足够的大小,将系统推出相应的吸引子盆地。维持注意力集中的困难可能源于神经干扰或发育异常,这些因素改变了目标相对于干扰的吸引子深度,使注意力容易被分心因素所吸引(Duch, 2019; Iravani等人, 2021; John等人, 2018)。
有理论工具促使我们将大脑划分为准独立的子系统;我们现在将论证,这种分区比传统的功能马赛克更有启发性。DST不仅仅是吸引子、排斥子和轨迹的其他定性特征的分类。重要的洞见来自于分岔的研究:由平滑参数变化引起的状态空间的定性变化。参数,也被称为“余维”,与定义状态空间的维度不同。典型的分岔例子是在二维FitzHugh-Nagumo模型及其后代中从静止转变为稳定重复尖峰(FitzHugh, 1955; Izhikevich, 2006)。在这个对霍奇金-赫胥黎动作电位模型的简化中,模型神经元的兴奋输入充当参数,而两个维度是电压和恢复,这些特征表征了尖峰行为。增加输入可以触发“亚临界Hopf分岔”,在这种情况下,一个点吸引子,稳定的静止状态,变得不稳定,并形成一个吸引性极限环,如周期性动作电位的情况。与DST中的所有概念一样,只有在我们指定了模型方程时,分岔才有确切的含义。但对这一一般概念的认识可能会指引研究人员走向数学模型和理论洞见。例如,在上面讨论的动机吸引子景观的情况下,如果环境最初只提供一个显著的目标,但在参数变化后,例如感知危险的减少后,提供两个目标,比如吃饭和睡眠,那么就会发生分岔,从一个转变为两个动机吸引子。分岔也已用于模拟诸如抑郁症等精神疾病的发展(Ramirez-Mahaluf等人,2017)。
神经调节多维空间
哪些神经现象能够改变大脑的多维吸引子景观?将多巴胺、去甲肾上腺素和血清素等神经调节剂视为大脑亚网络的参数,可能为大脑如何灵活地改变自身的低维神经动力学提供新视角。长期以来有证据表明,神经调节剂的调节与认知功能紧密相关,通常通过倒U型关系(Arnsten, 1998)——例如,去甲肾上腺素可以使个体从脱离状态转变为参与心态,然后再回到脱离状态。为了测试这些能力是否与吸引子景观动力学相关,Shine等人(2018)通过改变神经增益来模拟神经调节剂对神经活动的影响——有效地调整网络中个体群体对彼此的影响程度。在中等激活水平下增加神经增益导致区域间同步性的突然、非线性增加,与基于任务的fMRI数据分析时观察到的经验性网络拓扑特征重叠(Shine等人,2016)。同一模型被用来展示增益介导的区域间信息传递熵的增加(Li等人,2019)。鉴于神经调节剂通过影响神经增益的机制相似(Shine等人,2021),我们预期其他神经调节剂对网络动力学有类似的影响,但有其独特功能的特异性(Kringelbach等人,2020)。
神经调节剂还可以对状态空间动力学产生更微妙的影响(图2)。例如,Munn等人(2021)使用7T fMRI和统计物理学的结合,展示了升高唤醒系统关键枢纽的活动模式如何不同地影响大脑的吸引子景观。具体来说,蓝斑核(大脑去甲肾上腺素的主要来源)的活动被发现先于吸引子景观的平坦化,因此允许系统用比以前更小的干扰离开吸引子。相比之下,梅纳特基底核的血流量(皮层胆碱能输入的主要来源)被发现先于大脑处于深井中的时刻,逃脱能力大大降低。重要的是,这些变化也与现象状态的改变相关。通过分析在呼吸觉察冥想期间获得的fMRI数据,Munn及其同事发现了与内部意识的改变相关的类似吸引子景观动力学——具体来说,是冥想者注意到他们的思维已经“偏离”他们的呼吸的时刻。这一现象也非常类似于去甲肾上腺素介导的“网络重置”概念(Sara & Bouret, 2012),这也被用来解释与双稳态图像相关的感知稳定性的转变(Einhäuser等人,2008),因此可能代表神经调节剂调节和网络层面动力学之间交汇的一个基本特征。
图2 神经调节多维空间。
(A) 使用虚拟大脑中实现的神经质量模型,操纵了定义慢变量活动的输入-输出曲线的两种不同方式:加深sigmoid曲线(左图,神经增益)或放大(右图,兴奋性)。
(B) 变化神经增益和兴奋性导致系统级动力学的突然转变 - 通过增加神经增益,系统从分离状态(“S”,低相位同步)转变为整合状态(“I”,高相位同步)。
(C) 分离(即“S”)和整合(即“I”)阶段的功能性大脑网络示意图 - 在整合状态下,原本孤立模块之间存在更多的连接。
(D) 上图:能量景观,定义了在不同大脑状态之间移动所需的能量 - 通过增加响应增益,去甲肾上腺素被提议使能量景观变平(红色);而通过增加乘法增益,乙酰胆碱应加深能量井(绿色)。
下图:经验性BOLD轨迹能量作为基线活动的平均平方位移(MSD)和样本时间点(TR)的函数(黑色)以及蓝斑核(大脑干中的关键去甲肾上腺素枢纽,红色)和迈纳特基底核(皮层乙酰胆碱的主要来源,绿色)的短暂激增后 - 相对于基线能量景观,蓝斑核的短暂激增(红色)导致能量景观变平或减少,而迈纳特基底核的峰值(绿色)导致能量景观升高。
动态系统理论在人类神经成像中的应用
用DST的语言重新阐释神经成像数据为研究大脑提供了令人兴奋的机会,这种语言专为描述大脑分布式、动态和高度整合的特性量身定做。我们沿着该领域先驱研究的脚步,结合神经成像、计算建模和认知神经科学任务,以提升我们对大脑动态活动规则的理解(框1),我们确定了三个关键原则,通过这些原则神经成像研究人员可以采纳动态系统的视角:从局部到全局层面的放大,用更动态的大脑描述代替静态描述,以及从描述到模拟的转变(图3)。通过设计采纳这些方面的神经成像方法,我们希望促使该领域向更“理想”的实验迈进,这些实验不仅能揭示大脑的内在运作,还能识别与大脑的复杂、适应性和动态特性互动的更敏感手段。
框 1. 神经成像中动态系统方法的谱系在神经成像数据的DST建模中,微分方程变得越来越受欢迎(beim Graben等,2019;Kringelbach & Deco,2020;Wang等,2019)。然而,如图1中示意性地表示的那样,基于微分方程的方法占据了一个连续的“模型特征空间”,并不是所有这些方法都使用了DST概念的全部套件。我们理解日益扩展的动态建模和DST文献的三个关键特征是:(1) 在定性或机械解释上的关注程度,使用如吸引子和分岔等定性模式,(2) 在定量拟合数据上的关注程度,以及(3) 使用数据的特征来解释行为(认知、情感和其他过程)的程度。 虽然将定性和定量建模视为一个连续体上的相互排斥的极端是诱人的,但一个模型有可能在两者上都表现出色。近期的研究表明,对数据的密切关注和精确的机械模型可以并行不悖(Breakspear,2017;Deco & Jirsa,2012;Kringelbach & Deco,2020;Shine等,2021;Wang等,2019)。然而,数据的极端复杂性,以及研究目标的多样性,意味着对大脑的动态建模不能有一个“一刀切”的方法。理想情况下,进行定量拟合的模型和更多关注定性特征的模型可以相互约束和启发。 我们认为,DST模型的第三个突出特征——将大脑动力学与行为之间的映射——具有最大的成长空间。鉴于大脑的复杂性,将其作为一个独立的现象而不是广泛行为现象集的中心部分(认知、情感和行动)是自然的。鉴于这些现象本身可以用动力学来描述,DST在神经成像领域的一个关键目标必须是展示,超越简单的相关性,如何特定的神经动力学模式产生特定的行为动力学模式。换句话说,神经成像领域将从那些不仅产生准确模拟和与低级神经机制接口,而且还提供情感或广泛认知模式动力学的因果和功能账户的DST模型中受益。在这个方向上的早期步骤包括研究冥想和睡眠,将DST概念直接映射到神经成像数据上(Deco等,2019;Galadí等,2021;Melnychuk等,2018;Munn等,2021)。临床和精神病状况的神经成像研究开始通过DST透镜来观察,包括癫痫(McIntosh & Jirsa,2019),偏头痛(Dahlem & Isele,2013)和精神分裂症(Loh等,2007)。在将DST作为研究神经成像数据的方式和作为产生症状的视角之间,有许多紧密整合的机会,例如注意力缺陷多动障碍(Iravani等,2021),自闭症(Duch,2019)和抑郁症(Ramirez-Mahaluf等,2017)。 |
图4 人类神经成像中的分析方法空间。
在人类神经成像数据分析中,有多种流行的方法,我们将它们嵌入到一个立方体的轴中,以突出三个关键的动态系统特征:静态到动态(x轴)、逆向到正向(y轴)和局部到整体(z轴)。我们认为,要拥抱动态系统视角,就需要转向立方体的右上角(即“理想实验”)。虽然模型的理论目标应该是动态的、全局的,并且以正向建模为导向,但为了全面理解,多种方法是必需的,尤其是对实验获得的数据进行分析(即逆向方法)。为了更清晰,我们将在“逆向”轴上得分高的方法用红色标记,而在“正向”轴上得分高的方法用绿色标记。需要注意的是,某些方法覆盖的空间比这里指定的要大(例如,PCA和ICA既可以用于动态分析,也可以用于静态分析),而且这些盒子不应被视为特定方法的强制限制,而应视为目前大多数神经成像研究中这些方法的大致共识。
SPM = 统计参数映射;FC = 功能连接性;MVPA = 多体素模式分析;tvFC = 时间变化的功能连接性;Dir. FC = 定向功能连接性;PCA = 主成分分析;ICA = 独立成分分析;ACF = 自相关函数;DCM = 动态因果建模;SC = 结构连接性。
放大观察整个网络
在大多数功能磁共振成像(fMRI)研究中使用的流行的“大规模单变量”统计参数映射(SPM)方法,限制了对动态大脑的深入理解,尤其是其内部相互联系如何彼此影响并随时间变化。在这种传统方法中,继完成谨慎的预处理步骤(Esteban等,2019)后,将独立的统计模型应用于行为任务范式(与血液动力学响应函数或有限脉冲响应模型结合,以考虑血液动力学延迟),并分析单个体素或从(希望预先定义的)感兴趣区域计算出的平均、汇总时间序列。这种方法在识别具有特定功能的区域方面取得了成功(例如颞下回面部区域),通过聚类独立识别的体素与通常涉及任务对比的统计模型(例如在观看面部与观看场景时的激活)。这些方法的早期成功在学术界形成了一种相对静态的心态,这阻碍了涉及多个区域随时间相互作用的更详细解释。尽管有许多开创性工作研究整个大脑的神经成像并给出回路级别的解释,我们认为纯粹静态的统计模型不足以深入理解健康和疾病状态下认知现象的机制。
从神经影像学和动力系统理论(DST)的角度看,DST方法与潜在机制有着直接且内在的联系。举个例子,研究者可以不仅仅通过单变量分析来报告面部观察任务“激活”颞下皮层,而是可以报告整个大脑激活模式如何从一种状态(观察场景时)转变到另一种状态(观察面部时),然后随着时间再次回到原来的状态。即使在单变量分析中,这种观点也可以通过定期包含功能磁共振成像(fMRI)活动的动画,并使用未设阈值的表面图以改善可视化来支持。多回波序列甚至可能允许足够的去噪(Kundu et al., 2017),以检查单个试验,从而避免了掩盖了影响激活移动的网络状态的试验平均。特别是去噪后的未设阈值动画可能暗示了状态之间的轨迹。关键的是,这种方法将提供额外的步骤,例如调查可能导致认知能力差异的神经过程(假设有一个好的观察模型),或预测在诸如经颅磁刺激或适当选择的药物干预等干预下,动力学应如何变化。
多变量分析近年来逐渐增长了人气。这些方法从一个假设开始:神经表示是非局部的,也就是说,大脑的功能能力依赖于分布式的活动模式,这些模式反映了神经区域之间的相互影响。最广泛采用的逆向(即数据拟合)多变量方法,用于测量这些效应的是功能连接磁共振成像(FC)、种子点基础和独立成分分析(ICA)、多体素模式分析(MVPA),以及心理生理交互(PPI)和格兰杰因果关系(图3)等有效连接方法。这些方法提供了对系统级大脑组织的洞察:例如,基于功能连接的模块化社区集合的想法,这些社区大致与不同的功能能力相关(Smith等,2009)。然而,尽管这些方法提供了清晰的视角,但重要的是要注意,这些方法仍主要集中在拟合数据而不是创建生成模型上。正如我们上面提到的,通过将神经成像数据的研究基础放在动力系统框架中,可以在很大程度上弥补这个理论上的差距。
其他流行的方法是基于合理假设的,即神经活动是低维的:神经成像数据的固有自由度通常远少于采样大脑的不同记录数量(Churchland等,2012;Durstewitz,2017;Gallego等,2020;Gotts等,2020;Shine等,2019a,2019b)。采用这一假设——使用诸如主成分分析(PCA)和ICA等流行方法(图3)——意味着实验者可以减少他们需要跟踪的独立变量数量,这一过程使得解释和建模大大简化。在神经成像领域,目标通常是降低体素或电极的维度,使得原本难以处理的数据集现在可以在低维(“状态”)空间中有效跟踪(并可视化)。在最近的一项fMRI研究中,Shine等(2019a)使用PCA将多任务区域的BOLD活动简化为一组低维成分,然后显示这些成分与基于认知神经科学、网络神经科学、动力系统理论和神经调节受体表达的分析清晰相关。然而,降维方法的某些关键假设与用于“清理”数据的激进预处理步骤不兼容(Gotts等,2020)——仔细的建模清楚地表明,这些策略常常“把婴儿和洗澡水一起倒掉”,因此应谨慎应用。尽管如此,这种方法只是触及了系统神经科学中降维潜力的表面,正如非人类研究中的许多例子所证明的那样(Chaudhuri等,2019;Mastrogiuseppe & Ostojic,2018;Stringer等,2016)。
图论为拥抱神经活动模式的分布式特性提供了另一种方法(Sporns, 2015),使其与动态系统理论(DST)更加和谐地结合。这种方法将大脑区域视为网络(或图)的节点,并根据时间相似性的强度定义这些节点之间的边(例如,使用皮尔逊相关性或小波相干)。完成这一步骤后,可以使用数学工具(Fornito et al., 2016)来推断网络的拓扑属性,即那些无论特定实现如何都存在于数据中的特性(Sporns, 2013),以及这些属性如何随着诸如任务的认知需求等因素的变化而变化(Shine & Poldrack, 2018)。这种方法并非没有陷阱,因为看似微不足道的选择(如边阈值的存在及其程度)可能对特定认知能力的推断结论产生重大影响(Hallquist & Hillary, 2019)。此外,还有证据表明,不同认知任务对稳定节点的解读能力可能会有显著差异(Salehi et al., 2020)。尽管存在这些问题,这些方法确实揭示了大脑系统级动力学的重要方面,因此能够生成关于神经活动如何植根于潜在神经生物学的预测。近期研究中的两个相关例子涉及将大脑网络整合与升行去甲肾上腺素系统的扩散投射(Munn et al., 2021; Shine et al., 2016, 2018)以及丘脑基质区域(Müller et al., 2020a, 2020b)联系起来。
从静态到动态的转变
生物体是由生物物理和电化学相互作用不断变化的网络。由于这种组织结构,刺激的处理方式取决于刺激到达时生物体的具体状态。换句话说,大脑本质上是动态的,无法仅通过静态描述来理解。例如,不仅要检查体素中的活动水平如何随时间变化,还要模拟体素之间是如何相互影响的。然而,现代神经影像学中使用的大多数方法都包含了一个隐含的静止性假设——从动态系统理论(DST)的角度来看,这相当于假设大脑在刺激到达时总是处于状态空间的同一位置,这很难合理化。
将动态性纳入现代神经影像学方法的一个简单方式是将分析扩展到超出领域内典型的零滞后相关性假设。这些模式本身并非不可解释——例如,从长时间的功能连接fMRI扫描中得出的静态网络划分的稳健性和相对不变性表明了一种慢速动态稳定性,而非平均的人为效果。然而,也有证据表明,通过计算整个扫描的功能连接模式,研究人员可能会平均掉在较短时间尺度上发生的重配置(Faskowitz et al., 2020; Honey et al., 2007; Karahanoğlu & Van De Ville, 2015)。幸运的是,存在方法来缓解这些限制(Robinson et al., 2021)。例如,追踪fMRI中的时间偏移相关性显示,内在活动的著名零滞后时间相关结构是作为神经轨迹的滞后结构的后果而出现的(Mitra et al., 2015)(图3)。在极端情况下,这些模式可以被解释为时空行波(Raut et al., 2021)或本征模式(Robinson et al., 2021),这些都适合于动态系统建模(Koch, 2021)。行波模型是DST中广泛的粗粒化方法类别的一个例子,包括神经场、神经群和平均场模型(Bojak et al., 2010; Byrne et al., 2020; Deco et al., 2013b; Müller et al., 2020a; Shine et al., 2021; Wang et al., 2019)。另一个相关的例子来自时变功能连接领域,该领域通常将标准神经影像扫描分成较小的窗口,然后描述随时间波动的相关模式(Lurie et al., 2020)。在这两种情况下,接纳区域间协调的内在动态性可以为构建更强大的人脑及其行为调控的生成模型铺平道路。
fMRI的一个常见批评是其典型的时间分辨率比大多数感知和行为变化的时间尺度要慢。虽然这对于快速的行为选择是正确的,但人类和其他生物体中的稳态过程必然发生在各种时间尺度上。最快的感知和反应嵌入在慢动态轨迹中,这可能对应于情绪、情感或认知模式等现象,而这些现象又嵌入在更慢的轨迹中,如激素/昼夜节律等。全脑功能成像的时间和空间粗粒度特性使其非常适合于描述“准不变量”——即感知、思考和行动所框定的神经环境。神经动力学在一个交织的时间层次结构中组织起来,因果关系在两个方向上运作。例如,慢振荡调节快速振荡(Tort et al., 2010),而从心理学角度来看,突然的惊吓可能会导致情绪的持久变化。作为一个初步的近似,将较慢的fMRI发现视为窗口,可以看到为更快处理设定上下文的慢过程是有用的。此外,巧妙的任务设计可以识别更快的反应,大约几百毫秒的顺序(Lewis et al., 2018),因此甚至更快的动态也可以研究。
应用fMRI动态分析的另一个潜在障碍是,大多数fMRI范式涉及对预定时间段的数据进行分析,无论它们是刺激块还是快速呈现的事件集合。虽然这些方法传统上被认为对于确保有效的信噪比很重要,但这些方法施加的限制可能会限制对于游戏中动态过程的结论。此外,纯粹基于任务的神经记录划分将平均掉任何与任务结构无关的功能性变异。换句话说,潜在的假设是所有功能相关的神经动力学都与实验者假设的时间划分强烈相关。幸运的是,新的任务结构,如看电影(Finn & Bandettini, 2020; Meer et al., 2020)和电子游戏(Richlan et al., 2018),不会强加典型的信号平均方法中使用的事件结构。相反,可以构建动态模型来预测大脑状态轨迹如何随着视频游戏而变化,然后将这些模拟与获取的fMRI数据进行比较。
吸引子景观的概念为全脑神经成像提供了吸引人的联系,并提出了一套可以应用于神经成像数据的神经轨迹。在这种框架下,大脑状态沿着吸引子景观的地形演变,就像球在重力的影响下沿着山谷滚动并需要能量来爬上山坡一样,这分别对应于向吸引或排斥大脑状态的演变。这种技术可以解析在多稳定系统中可能被掩盖的吸引(和排斥)状态,并已成功应用于尖峰神经元的动态(Tkačik et al., 2015),BOLD fMRI(Munn et al., 2021; Watanabe et al., 2013, 2014),以及MEG(Krzemiński et al., 2020)。这种方法提供了几个概念上的进步,但也许最重要的是,它使得系统级解释这一令人生畏的任务变得相对直观。重要的是,这个框架不仅仅是一个类比,因为吸引子景观的地形与合成真实神经时间序列数据所需的生成方程具有一对一的对应关系(Breakspear, 2017)。例如,Munn等人(2021)比较了升交感神经系统皮质下区域发生相位爆发后的BOLD活动轨迹,通过利用吸引子景观方法,明显地看到肾上腺素和胆碱能神经调节积极调节了吸引子状态的强度。
从描述到模拟的转变
所有生物学中的计算模型都可以根据它们与实验数据的关系被置于从“逆向”到“正向”的连续体上(Gunawardena, 2014)。统计模型以“逆向”方式进行:建模从实验数据开始,然后“逆向工程”生成数据的因果机制。相比之下,“正向”建模从已知或假设的因果机制开始,使用这些机制来生成反映实验数据关键方面的模式(Breakspear, 2017)。这两种方法结合在神经科学中可能是最成功的模型之一,即霍奇金-赫胥黎动作电位产生模型(Hodgkin & Huxley, 1952):数据拟合促进了一套微分方程的发现,这些方程指向了动作电位产生的机制。
在单个神经元以上的规模上,正向建模变得越来越不受实验数据的约束。神经影像技术的神经生物学基础也没有共识(Breakspear, 2017)。但是缺乏数据约束并不意味着不能建立正向模型:对解剖学、行为和进化史的仔细分析可以为模型设计者提供可以被微分方程捕获的合理机制。此外,鉴于神经和行为数据的变异性,让生成模型过于紧密地遵循特定量化记录是没有意义的。与特定实验的特有特征相比,定性描述和预测可能比定量数据拟合更加稳健,因为它们更容易泛化。例如,乙酰胆碱和去甲肾上腺素可以调节吸引力景观地形的概念(Munn等,2021)可以导入到未来实验的设计中,不仅在冥想的背景下,而且在更广泛的注意力范围内。它还与可以直接操纵这些神经调节剂的非人类研究技术建立了联系。
存在用于模拟动态系统的软件程序,如大脑动力学工具箱(Breakspear & Heitmann, 2010; Heitmann & Breakspear, 2018)和虚拟大脑(Ritter et al., 2013; Sanz-Leon et al., 2015; Schirner et al., 2021; Spiegler et al., 2016)。使用这些工具,可以通过将模型输出与fMRI数据进行比较来直接测试动态系统理论(DST)的概念。然而,由于神经影像学中的DST领域正在迅速发展,软件包可能不如用编程语言(如MATLAB、Python或Julia)编写的自定义模拟灵活。例如,可以使用自定义代码构建层次特定的模型,纳入大脑皮层中存在的确切的、特定于区域的连接原则(Braitenberg & Lauria, 1960; Du et al., 2012; Havlicek & Uludağ, 2020; Stephan et al., 2019)。无论采取何种计算方法,都可以模拟每个区域或神经元的活动动态,并将活动与典型的血液动力学反应函数或更高级的血液动力学模型(Aquino et al., 2012; Pang et al., 2016)进行卷积。这种模拟的输出然后可以与实验期间收集的fMRI数据进行定性比较,进一步迭代的模型将理论与实验数据更紧密地结合。这种方法在结合快速采样率(Polimeni & Lewis, 2021)和层次解析的fMRI记录(Huber et al., 2021; Polimeni et al., 2010)的进步时将特别强大,这两者都将提高模型与神经影像数据集成的精度。
需要注意的是,计算模型所施加的一个关键限制是它们与“真实”情况的抽象程度——成年人大脑的巨大维度无疑比典型的神经模型可以真实模拟的更为复杂,以致于即使是最详细的计算模型也可能缺乏足够的自由度来有效地以足够清晰和稳健的方式描述动态系统的真实本质。缓解这个问题的一种方法是设计模型架构来表达神经解剖学的特定特征,然后,在调查该特征的任何有趣含义之后,将模型的输出与实验神经记录进行比较。虚拟大脑(Ritter et al., 2013; Sanz-Leon et al., 2015; Schirner et al., 2021)是一个很好的例子,它提供了这种方法的访问,并已被用于展示许多时空尺度上结构与功能之间的重要联系。在这些方法中,用户定义网络结构和感兴趣的计算模型,然后操纵任何实验感兴趣的参数。一个补充方法是设计更定制的神经架构,比如那些包含大脑皮层和丘脑之间的相互作用的架构,然后努力确定这种架构可能带来的好处和成本。例如,相对分散的丘脑皮层投射群体的存在(如丘脑基质核的情况;Jones, 2001; Müller et al., 2020a)可以将丘脑皮层神经质量网络转移到准临界状态,这种状态的特点是在网络整合和分离之间不断形成和解散神经元集合的权衡(Müller et al., 2020b)。尽管这些方法可能非常有洞察力,但重要的是要记住选择一个与感兴趣的机制和研究者想要探讨的特定影像技术相匹配的建模尺度。
值得强调的一点是,动态系统理论(DST)不仅仅是使用微分方程来拟合数据。例如,某些版本的动态因果模型(DCM)(Cao等,2019年;Friston等,2019年)专注于数据拟合,但并未运用吸引子景观、极限环或分岔等定性概念,部分原因是它们局限于线性领域(Sadeghi等,2020年),而更复杂的非线性版本则做到了(Daunizeau等,2012年;Roberts等,2017a,2017b)。基于微分方程的模型,无论是线性还是非线性,都具有生成性,可以模拟假设的BOLD(血氧水平依赖)数据。除了进行定量拟合和模拟的能力外,DST还提供了概念工具,这些工具可以在数据和神经机制之间建立桥梁。原则上,任何神经影像学的结果度量都可以由一个精心设计的前向模型生成,但那些包含生物数据复杂动态特征的度量(Bizzarri等,2019年;Juarrero,2002年)可能会导致更丰富的因果理解。此外,正如我们在本文中多次提到的,DST的定性工具——吸引子、分岔、亚稳态等——不仅有助于解释数据和神经过程,还自然地与行为和认知的动态联系在一起(也见框1)。
在本文中,我们主张动态系统理论(DST)框架有潜力彻底改变神经影像数据的分析方式,以及这些数据如何解释行为,无论是在人为的任务基础协议中还是在更自然的情境下,如观看电影。我们认为,拥抱这一视角将使我们能够发现神经机制与我们从标准影像方法中测量到的模式之间原本隐藏的联系,这反过来可以迅速增强我们对健康和疾病状态下大脑的理解。例如,我们认为,通过识别动态现象(如稳定性和极限环)的定性但又特征明显的动态变化,或理想情况下,对结果进行几何或视觉解释(例如,以吸引盆地或马鞍点的形式),这种全脑神经影像数据中出现的新方法,将推动系统神经科学的快速进展。这种范式转变已经在进行中,如许多使用神经影像技术衍生的稳定性、熵和低维吸引子流形等测量值的研究所证实的那样(Chaudhuri et al., 2019; Koppe et al., 2019; Müller et al., 2020b; Munn et al., 2021)。
还有许多工作要做。幸运的是,DST方法的一个主要优点是,已经存在大量的fMRI数据,可以在动态系统的框架内重新分析,可能会对高阶心智现象的大脑基础带来重大新见解。为此,我们强烈建议感兴趣的神经科学家主动与计算建模者合作,以建立可以进行预测并为已经获取的数据提供更深入的直觉和解释的模型。当然,更高空间和时间分辨率的数据,以及结合光遗传学与fMRI的干预性数据集(如Ryali et al., 2016)无疑将进一步加速进展。非线性动态系统必须被模拟,所以计算能力的提高助推了DST所能理解的范围的扩大。DST与影像学之间将产生的协同作用是系统神经科学领域成熟的关键一步。