Nature子刊:早期逆境对儿童期脑结构与功能连接耦合的影响

 早期逆境 (ELA) 暴露被认为会加速发育。然而,ELA 对神经发育轨迹的影响尚未得到直接评估,而是在很大程度上是从成人队列的回顾性报告中推断出来的。利用来自儿科队列研究 (N = 549) 的多模态神经影像数据,我们使用结构-功能耦合 (SC-FC)(结构连接和功能连接之间的相关性)模拟了整个童年时期的神经发育轨迹。在 4.5 至 7.5 岁之间观察到 SC-FC 线性下降。当按 ELA( 早期逆境) 分层时,只有高逆境组表现出曲线轨迹,在 4.5 至 6 岁之间急剧下降,表明神经发育加速。这一发现得到了 6 岁时高逆境组相对于低逆境组 DNA 衍生的表观遗传年龄加速增加的证实。4.5 岁时的 SC-FC 也正向调节了 ELA (早期逆境)与儿童中期评估的行为结果之间的关联。这些结果证明了 ELA 与神经发育之间的关联,以及它们如何相互作用以影响行为。本文发表在Nature Mental Health杂志。可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,思影提供脑影像数据分析及课程,如感兴趣也可添加微信咨询)。

主要内容:

     早期生活逆境 (ELA) 暴露是儿童期行为和情绪问题以及长期健康后果的风险因素。神经影像学研究提供了大量证据表明围产期逆境与神经发育结果之间存在关联。这些发现包括与常见精神疾病有关的脑区结构和连接的改变。ELA ( 早期逆境)与大脑结构和功能发育的关联现在被认为代表了与逆境相关的适应性变化,而不是压力引起的损伤。ELA 作为一种信号,反映了当前的环境条件,这些条件会影响大脑发育的速度,作为一种适应性反应,以满足不利发育条件的需求,但可能会以牺牲成年人的福祉为代价。在受损的环境中,加速发育以实现独立可能比有利于高级脑功能发育的扩展神经可塑性更重要。“压力加速”假说提出:暴露于 ELA 会加速发育,尤其是在与恐惧/压力相关的领域和情绪回路中。在压力环境中长大的啮齿动物表现出恐惧学习和记忆保持的加速发展。在人类中,暴露于母亲痛苦和剥夺的儿童表现出成人样的边缘脑特征(例如,更大的杏仁核体积,通常在成人中观察到的功能连接模式)。此外,暴露于早期生活压力的儿童表现出通过端粒长度或 DNA 甲基化衍生的表观遗传年龄测量的生物学年龄加速。

      目前关于 ELA 和神经发育轨迹的文献受到儿童期纵向神经影像数据缺乏的限制,而这些数据对于对发育加速假说进行受试者内评估是必需的。大多数具有大型神经影像数据集的逆境相关研究都是回顾性横断面研究,其中神经影像数据是从报告不良童年经历 (ACE) 的成年人那里收集的。因此,发育轨迹不是直接评估的,而是根据成人数据推断的。此外,现有的神经发育队列(例如,青少年大脑认知发展 (ABCD)、人类连接组计划发展 (HCP-D) 和儿科影像学、神经认知和遗传学 (PING) 研究)涵盖了较大的年龄范围,7 岁以下的受试者很少,这可能是由于在学龄前儿童中收集高质量神经影像数据的挑战。因此,关于从儿童早期到晚期的神经发育轨迹的文献存在一个关键空白,这使得 (1) 评估高 ELA 暴露对大脑发育的影响和 (2) 确定儿童期干预的敏感时间窗口变得困难。

      最近关于神经发育轨迹的研究集中在结构连接和功能连接之间的相关性,即结构-功能耦合 (SC-FC),作为一种衡量大脑组织和成熟度变化的指标。在 8 至 22 岁之间,SC-FC 以功能网络特异性的方式发生变化,高度保守的运动区域减少,而跨模态皮层增加。在成人中,SC-FC(结构连接-功能连接耦合 )在单峰皮层区域最高,在跨模态皮层最低。高结构连接-功能连接意味着功能交流直接由局部白质通路支持,而低结构连接-功能连接则表明功能交流依赖于多突触的间接通路(环路水平的调制)和更大的可塑性潜力。结构连接-功能连接的程度与行为结果相关,如执行功能和更高的认知能力。值得注意的是,奖赏网络中显著的结构连接-功能连接耦合与儿童后期执行功能任务的表现不佳有关。因此,结构连接-功能连接耦合捕获了关于年龄和当前可塑性状态的信息(高度保守的单峰区域与具有更大可塑性潜力的跨峰区域)。

      目前关于结构-功能连接耦合(SC-FC)的研究主要集中在青少年和成人群体,因此儿童的 SC-FC 轨迹尚未得到深入研究。有关早期生活逆境(ELA)的研究将预测在儿童早期出现的结局,这与早期生物经验嵌入的一致性相符。为了验证这一假设,我们利用了深度表型的“新加坡健康成长”(GUSTO)出生队列数据(表1和扩展数据图1),以探究神经发育(通过整个皮层平均的 SC-FC(结构连接-功能连接耦合 ) 评估)是否在暴露于高 ELA 的儿童中加速。基于先前神经影像学研究显示 ELA 与出生时的大脑结构相关联,以及揭示胎儿神经发育时期是与一系列神经精神疾病相关的基因峰值表达时间的分析,我们重点关注了产前逆境(补充部分1.1)的测量。尽管有证据表明产前逆境是精神病理学的风险因素,但产前逆境如何影响儿童神经发育的速度仍不清楚。我们首先在我们的完整神经影像学队列中建模了三个时间点(4.5岁、6岁和7.5岁)的 SC-FC(结构连接-功能连接耦合 ) 变化,该队列包含不同和重复的样本(图1和补充部分1.2)。我们的三个时间点对应于两个标准的儿童阶段——学龄前和童年中期。然后,我们根据暴露于不同逆境水平的组别(无逆境、低逆境和高逆境)对队列进行分层,并比较这些组之间的 SC-FC (结构连接-功能连接耦合 ) 轨迹。接下来,我们研究了轨迹差异是否特定于具有长期发展的跨模式关联区域。我们专门检查了额顶网络(FPN)和视觉网络(VIS),它们分别代表跨模式区域和单模式区域的功能网络。我们假设在高逆境组中会观察到加速发展,且这种加速发展将特定于跨模式关联区域。最后,我们进行了探索性分析,研究我们最早时间点(4.5岁)的 SC-FC(结构连接-功能连接耦合 ) 是否会改变儿童发展精神病理学的易感性,即它是否会调节逆境评分对儿童行为结果的影响。

表1:神经影像数据集和包含完整神经影像和逆境评分数据的数据集的人口统计学汇总

图片

图片

图1 研究设计和目的。

      通过对每个区域的结构连接(SC)和功能连接(FC)值进行斯皮尔曼相关性计算,得出 114 个区域皮层分割的区域 SC-FC 值(颜色是任意的,用于定性目的)。全皮层 SC-FC(结构连接-功能连接耦合 ) 是通过对所有 114 个区域的平均值计算得出的。网络特异性耦合是通过对分配给网络的区域的平均值计算得出的。累积逆境评分是根据七个组成部分计算的。这使我们能够模拟三个时间点(4.5 岁、6 岁和 7.5 岁;年龄范围,4.4-8 岁)的非线性 SC-FC 轨迹(黑色实线 ± 95% 置信区间),以及按逆境暴露程度分层(“无”(无逆境),分数 0,N = 121,总共 206 次扫描;“低”(低逆境),分数 1-2,N = 199,总共 353 次扫描;“高”(高逆境),分数 > 3,N = 34,总共 60 次扫描)。儿童行为量表 (CBCL) 在 7 岁时进行,以检测内化和外化问题。大脑网络图像是使用 ggsegYeo2011 软件包制作的。

方法

补充部分 1 中详细描述了方法。

对象

      参与者是 GUSTO 研究 的一部分,这是一项基于新加坡社区的纵向出生队列研究。纳入了来自 549 名参与者的神经影像数据,在 4.5 岁、6 岁和 7.5 岁时总共进行了 917 次扫描。一部分参与者 (N = 354) 拥有足够的数据用于计算逆境评分(表 1)。所有调查均按照赫尔辛基宣言中表达的原则进行。所有监护人代表参与这项研究的儿童提供了书面知情同意书。参与者每次 MRI 会议获得 150 新元,问卷和实验室任务额外获得 120 新元。

逆境评分计算

      逆境评分侧重于产前暴露,并按照先前描述的方法计算。逆境评分基于七个组成部分,如果满足相应标准,参与者每个组成部分得分 1 分,最高分 7 分(补充部分 1.1)。根据 ACE 关于累积逆境暴露的文献,分数被重新分类为三组:无逆境(分数 0,33%)、低逆境(分数 1-2,57%)和高逆境(>3,10%)(补充部分 1.1d)。

MRI 采集和预处理

      神经影像数据使用 3T MRI 扫描仪(西门子)在两个地点采集。对于每个受试者,收集了弥散加权、rs-fMRI 和 T1 加权图像。弥散数据在 FMRIB 的软件库 (FSL v.6.0.4) 中处理。使用 b0 图像创建脑掩模,使用涡流工具(具有 3 s.d. 的异常值阈值)进行运动校正,并使用局部主成分分析方法进行去噪。rs-fMRI 数据使用功能连接工具箱 Conn (v.20b) 的默认预处理和去噪管道进行处理,如先前所述(补充部分 1.2)。

感兴趣区域和连接矩阵

      感兴趣区域 (ROI) 是 114 个皮层区域,它们被分配到 Yeo 及其同事 确定的七个功能网络。对于每次扫描,通过血流动力学反应因子加权一般线性模型测量每个种子和目标 ROI 之间的 BOLD(血氧水平依赖性)时间序列的双变量相关系数来计算功能连接矩阵。结构连接矩阵是通过使用 FSL 的 BEDPOSTX 和 PROBTRACKX 工具 从概率性纤维束成像中计算每个种子和目标 ROI 之间的流线密度来计算的。

导出结构-功能耦合

      SC-FC(结构连接-功能连接耦合 ) 的计算方法如 Baum 等人所述,其中获得了每个区域的非零结构和功能连接值之间的斯皮尔曼相关性。全皮层 SC-FC 是通过对所有 114 个区域的平均值计算得出的。网络特异性耦合是通过对分配给网络的区域的平均值计算得出的。由于前两个时间点(即 4.5 岁和 6 岁)是在地点 1 收集的,而 7.5 岁的数据是在地点 2 收集的,因此使用纵向 ComBat (v.0.0.0.90) 对每个区域进行了跨地点的调和(补充部分 7)。

表观遗传时钟

      表观遗传年龄被用作发育的验证指标。在 6 岁时从参与者身上采集血液,并进行处理以获得用于 DNA 提取的白细胞层。使用 Infinium MethylationEPIC BeadChip 阵列按照标准方案进行 DNA 甲基化分析。使用 methylclock 软件包 (v.0.99.25)  中的 DNAmAge 函数计算 Wu 的表观遗传时钟 和年龄加速(针对细胞计数进行调整,ageAcc3)。选择 Wu 时钟是因为它是在儿科数据和血液样本上进行训练的。

儿童行为结果

     儿童行为量表 (CBCL) 用于检测儿童的行为和情绪问题。CBCL 在 7 岁时进行,是由母亲报告的问卷,将 118 个项目分类为内化和外化行为 。CBCL 子量表在我们的队列中显示出非常好的可靠性(内化子量表的 Cronbach α = 0.855;外化子量表的 Cronbach α = 0.888)。补充部分 5 中描述了与 ELA 相关的精神病理学的其他维度。

统计分析

      所有统计分析均在 R (v.4.04)中进行。所有模型都将性别作为协变量。alpha 水平设置为 P < 0.05(除非另有说明,否则为双尾)。

轨迹分析

       使用 mgcv 软件包 (v.1.8-39) 中的广义加性模型 (GAM) 对三个时间点(年龄范围,4.4-8.0 岁)的全皮层 SC-FC(结果)进行建模。为了模拟可能的非线性轨迹,将平滑函数 ƒ 应用于年龄(预测变量),其中 e.d.f. 统计量反映曲线非线性程度 64。为了解释纵向数据,我们还为每个受试者添加了一个平滑函数 f,相当于添加一个随机效应:

图片

     为了建模按逆境组分层的 SC-FC (结构连接-功能连接耦合 ) 轨迹,运行了第二个 GAM,为每个逆境组估计了单独的轨迹:

图片

比较逆境轨迹

      使用差异曲线直观地比较逆境轨迹,并使用线性混合效应 (LME) 模型进行统计比较。使用 gratia 软件包 (v.0.7.2)计算差异曲线,以评估每对逆境轨迹之间的差异(例如,无逆境减去低逆境)。如果差异曲线的置信区间不包括零,则轨迹存在显著差异。

      使用 nlme 软件包 (v.3.1-160) 执行 LME 模型,并用于评估 4.5 岁和 6 岁之间 SC-FC 的变化在逆境组之间是否存在显著差异(参考:高逆境),即逆境组和时间点之间的显著交互作用。鉴于我们关于加速发展的假设,报告了交互项的单尾 P 值。

加速发展的验证

       回归分析用于比较表观遗传年龄加速在逆境组之间是否存在显著差异,以高逆境作为参考组。基因分型的常染色体单核苷酸多态性的前三个主成分被用作协变量,以调整群体分层,这通常在涉及遗传数据集的分析中进行。

与行为结果的关联

       回归模型用于探索全皮层 SC-FC (结构连接-功能连接耦合 )是否调节了逆境评分对行为结果的影响。为每个指标运行单独的模型。如果交互作用显著,则使用交互包 (v.1.1.5) 69 进行简单斜率分析以分析事后差异。使用 caret (v6.0-92) 和 glmnet (v4.1-2) 软件包执行弹性网络回归,以探索行为结果的网络特异性调节因素。预测变量包括逆境评分、七个功能网络特异性 SC-FC 指标和七个交互项(逆境评分 × 网络特异性 SC-FC)。

功效分析

     当前的研究是正在进行的出生队列研究的一部分;研究目标不是原始队列招募的主要结果。此外,鉴于涉及的纵向随访,我们研究中的数据(尤其是 4.5 岁的第一个时间点)是在我们研究构思前几年收集的。因此,本研究未进行统计功效分析

结果

童年 SC-FC 轨迹及其按 ELA 分层

       本研究纳入了来自 549 名参与者(表 1)的静息态功能 MRI (rs-fMRI) 和弥散张量成像数据,在三个时间点(年龄范围,4.4-8 岁)总共进行了 917 次扫描。对于每个参与者,估计了 114 个区域皮层分割的每对区域的结构连接(由流线密度索引)和功能连接矩阵。全皮层 SC-FC 是通过导出每个区域的非零结构和功能连接值之间的斯皮尔曼相关性,并取所有 114 个区域的平均值来计算的。通过广义加性模型 (GAM) 建模的全皮层 SC-FC 轨迹从 4.5 岁到 7.5 岁呈线性下降(图 2a;有效自由度 (e.d.f.) = 1.006,F = 114.9,P < 0.001)。

图片

图2 | 使用广义可加模型(GAM)对SC-FC轨迹进行建模。

     a,在左图中,使用GAM对整个皮层的平均SC-FC(N=549,共917次扫描)在4.5至7.5岁之间进行建模,结果显示为平均估计值(紫线)±95%置信区间(紫色阴影)。基于三个时间点的实际数据的个体轨迹绘制为黑线。右图显示了年龄的GAM估计叠加效应(实线±阴影表示95%置信区间)。x轴上的黑色标记显示了个体年龄数据点。

     b, 按早期生活期不良经历(ELA)得分分层的SC-FC(结构连接-功能连接耦合 )轨迹(N=354,共619次扫描;分为无不良经历、低不良经历和高不良经历),显示在同一比例下。

     c,d, 分别为每个不良经历组估计时间点效应的轨迹(c)和图形显示每对轨迹之间差异的差异曲线(d)。如果置信区间不包括零(红色虚线),则认为轨迹存在显著差异。b-d的GAM结果显示为平均估计值(实线)±95%置信区间(阴影区域)。

      使用妊娠和早期生命指标的前瞻性数据收集来计算一部分参与者 (N = 354,总共 619 次扫描) 的 ELA 暴露。当队列按 ELA 暴露分层时(图 2b,c),我们观察到无逆境组和低逆境组的全皮层平均 SC-FC (结构连接-功能连接耦合 )呈线性下降(e.d.f. = 1,F > 30,P < 0.001)。仅在高逆境组中观察到曲线下降 (e.d.f. = 1.8,F = 9.6,P < 0.001;补充部分 2),这表明 SC-FC 在 4.5 岁到 6 岁之间以及 6 岁到 7.5 岁之间以不同的速率下降。

      为了比较轨迹,我们绘制了每对轨迹的差异曲线(图 2d)。无逆境组和低逆境组的轨迹相似。将无逆境组或低逆境组与高逆境组进行比较的差异曲线具有相似的形状,在 4.5 岁到 6 岁之间具有负值(相对于低逆境,高逆境的下降幅度更大),在 6 岁到 7.5 岁之间具有正值(相对于低逆境,高逆境的下降幅度更小)。在低逆境轨迹和高逆境轨迹之间观察到最大差异。

      使用 GAMS 进行的建模表明,在儿童早期,高逆境组的 SC-FC (结构连接-功能连接耦合 )下降幅度大于低逆境组。我们使用线性混合效应 (LME) 模型(4.5 岁至 6 岁;N = 251,总共 343 次扫描)对此进行了统计检验,发现 AdversityLow:Age 相对于 AdversityHigh:Age 显著更高(图 3a;估计值 = 0.024,s.e.m. = 0.012,t = 2.05,P(单尾)= 0.022;补充部分 3a),基于全皮层平均的 SC-FC。

图片

图 3:LME 模型的模型估计

     a,相对于低逆境组(N = 143,总共 197 次扫描),在高逆境组(N = 25,总共 34 次扫描)中观察到 4.5 岁到 6 岁之间 SC-FC 的加速下降,对于整个皮层 (P = 0.022) (a) 和 FPN(额顶网络) (P = 0.007) (b) 而言,但对于 VIS (P = 0.438) (b) 而言则不然。使用 LME 模型估计结果,报告的单尾 P 值用于 AdversityLow:Age 交互项。在 a 中,条形图显示模型估计的平均值 ± 标准误。在 b 中,箱线图显示为 Tukey 的五数摘要(粗水平线表示中位数;下铰链和上铰链分别表示第一和第三四分位数;须线延伸到四分位距 1.5 倍范围内的最远数据点;超过须线的点表示异常值)。

     c,在 6 岁时,基于 DNA 甲基化的表观遗传年龄加速 (N = 241) 在高逆境组 (N = 25) 中显著高于低逆境组 (N = 132;P = 0.01)。报告的 P 值(单尾)是使用线性回归模型估计的。条形图中的数据显示实际数据的平均值 ± 标准误。未进行多重比较校正。对于所有图,*P < 0.05,**P < 0.01。b 中的脑网络图像是使用 ggsegYeo2011 软件包制作的。

       我们接下来探讨了这一发现是否在特定功能网络中有所不同(图 3b)。LME 模型专门针对 VIS(视觉网络) 和 FPN(额顶网络)进行,它们分别代表单模式感觉网络和成熟缓慢的跨模式网络我们发现 FPN 的 AdversityLow:Age 显著高于 AdversityHigh:Age(估计值 = 0.033,s.e.m. = 0.013,t = 2.51,P(单尾)= 0.007),但 VIS(视觉网络) 则不然(估计值 = 0.004,s.e.m. = 0.023,t = 0.16,P(单尾)= 0.44),这表明跨模式脑网络具有更高的易感性。为了证实这一发现,我们执行了 LME 模型 (1) 不带协变量以获得未调整的估计值,以及 (2) 带有潜在混杂因素(补充部分 3b)。我们还对剩余网络执行了 LME 模型,并观察到默认模式网络 (DMN) 和突显网络(两者都是跨模式网络)的类似加速下降(补充部分 3c 和扩展数据图 2)。

验证

表观遗传年龄

      鉴于 SC-FC 在我们感兴趣的时间段内下降,高逆境组在 4.5 岁到 6 岁之间观察到的加速下降表明神经发育加速。为了验证我们的发现,我们根据基于 DNA 的甲基化表观遗传时钟 (N = 241) 评估了 6 岁的年龄加速。我们发现,与低逆境组相比,高逆境组的年龄加速显著更高(图 3c;估计值 = 0.28,s.e.m. = 0.12,t = 2.36,P(单尾)= 0.0095)。我们观察到与 SC-FC 相似的模式,即在高逆境组和低逆境组之间发现了最大差异,而低逆境组和无逆境组彼此相似。

敏感性分析

      我们在一个小型独立数据集(30 次扫描)中复制了我们的 LME 发现(补充部分 4a)。鉴于运动对神经影像数据的混杂影响,尤其是在幼儿中,我们对扩展数据集进行了敏感性分析,根据不同的运动标准排除了扫描的子集。主要的发现保持不变(补充部分 4b)。还评估了 SC-FC 估计对于我们可用数据的数量(补充部分 4c)和严格的运动参数(补充部分 4d)是可靠的。

与行为结果的关联

      ELA (早期逆境 )评分与 7 岁儿童的行为问题呈显著正相关(N = 427)。高逆境评分与内化(Pearson r = 0.22,P < 0.001)和外化行为(Pearson r = 0.20,P < 0.001)的风险增加相关。

     然后,我们检查了 SC-FC 是否会调节 ELA 评分与 7 岁时 CBCL (儿童行为量表)的关联 (N = 117)。我们使用 4.5 岁时全皮层平均的 SC-FC (结构连接-功能连接耦合)作为调节变量。SC-FC 和逆境评分之间的交互作用与内化行为(估计值 = 0.23,s.e.m. = 0.086,t = 2.66,P = 0.0089)和外化行为(估计值 = 0.28,s.e.m. = 0.086,t = 3.31,P = 0.0013)均存在显著关联。简单斜率分析表明,逆境评分与外化/内化行为之间的显著正相关仅在 4.5 岁时 SC-FC(结构连接-功能连接耦合) 较高时才存在(图 4a、b)。

图片

图 4:逆境评分、全皮层 SC-FC 和 CBCL(儿童行为量表)

     a,对于 CBCL 评估的内化行为 (a) 和外化行为 (b),观察到逆境评分和全皮层 SC-FC (N = 117) 之间存在显著的交互作用。模型估计值是从线性回归模型中获得的。

     c,弹性网络回归模型选择的变量系数汇总。调节方向(正或负)分别显示为绿色或红色。VAN,腹侧注意网络;SOM,躯体运动网络;LIM,边缘网络。

      为了探索网络特异性调节,我们检查了七个功能网络的 SC-FC 与逆境评分之间的交互作用。背侧注意网络 (DAN) 交互项被突出显示为具有最高的估计系数,表明它具有强烈的正调节作用,尤其是在内化行为方面 (图 4c)。

      同样,我们发现了对关系攻击和挫折水平的网络特异性调节作用(补充部分 5)。

讨论

      我们的研究模拟了从学龄前到童年中期的 SC-FC (结构连接-功能连接耦合)变化。因此,我们填补了神经发育文献中的一个关键空白,该文献之前缺乏从学龄前开始的纵向神经影像数据。当考虑到这段神经发育时期对一系列社会情感和认知功能的重要性时 (26),这些数据的相关性可以得到最好的理解。我们发现高逆境组在 4.5 岁到 6 岁之间 SC-FC 加速下降,这表明这段时间是潜在的干预窗口,可以减少 ELA 对后期结果的影响。此外,我们的研究结果描绘了不同童年阶段神经发育的异质性,并强调了将儿童归为单一群体的局限性。

      我们观察到 SC-FC 在童年时期随年龄变化而变化——具体而言,结构连接和功能连接之间存在正相关关系,这种关系在 4.5 岁到 7.5 岁之间减弱。这反映了神经发育背后的不同过程遵循不同的时间线。从神经发育文献来看,大脑在学龄前每年都会发生显著的变化 (26)。白质束显示纤维密度和束大小增加,表明结构连接逐渐增加。相比之下,功能连接往往遵循过度连接的模式,然后是修剪和重组以实现功能网络分离。此外,大脑 SC-FC 被认为是可塑性的衡量标准,其中高耦合意味着高区域特异性/低可塑性 。在儿童早期,由于正在进行的神经发育过程,预计会出现低特异性和高可塑性。我们对儿童早期神经发育过程的理解与观察到的 SC-FC 下降相符。总之,SC-FC 是一种很有前途的指标,用于捕捉童年时期大脑连接和组织的变化,可用于识别发育轨迹中的异常。

      我们发现,产前逆境暴露与 4.5 岁到 6 岁之间 SC-FC 的更陡峭下降相关,这表明发育加速。但是,我们承认,在高逆境组中观察到的 4.5 岁到 6 岁之间更陡峭的斜率可能是由于 4.5 岁时 SC-FC 较高,并且可能代表“赶上” 7.5 岁时的正常发育。尽管如此,很明显,幼儿大脑成熟的发育轨迹会因 ELA 暴露而改变。例如,低社会经济地位 (SES) 暴露与皮层厚度和功能分离的变化有关。皮层厚度在 2 岁左右达到峰值,而低 SES 暴露与生命早期发生的皮层变薄有关。这些发现表明突触增殖的提前终止和突触修剪窗口的减少。其他研究表明,较高的 SES 与更长期的功能网络发展相关。Tooley 等人提出了一个理论模型,其中与高 SES 相关的结构发展延长时期反映在功能分离中,即功能网络分离的较慢轨迹。我们的研究结果表明,虽然加速发展足够普遍,可以通过对整个皮层的平均值来检测,但具有较长成熟窗口的区域特别容易受到影响。跨模式关联网络不明显的皮层边界支持了这些脑网络经历长期发展并且更容易受到影响发展的因素影响的假设。Lin 等人假设长期发展能够在学习等行为中实现适应性发展可塑性。这种理解表明,加速发展发生在 FPN(额顶网络) 和 DMN(默认网络) 等网络中,因为这些区域对于依赖经验的学习很重要。我们的研究通过表明以神经可塑性窗口减少的形式(通过更陡峭的 SC-FC 下降来捕捉)的加速发展可能发生在儿童早期,作为产前逆境暴露的结果,从而为该文献增添了内容。这并不奇怪,因为大量的大脑发育发生在子宫内。此外,据推测,产前逆境暴露会增加对产后影响的易感性,突出了产前和产后逆境对神经发育的独特互补效应。

      关于产前压力的文献提出了几种子宫内环境可能影响下游发育的机制。这包括神经内分泌和免疫系统的改变,这些改变会对以后的生活发展产生持续的影响。糖皮质激素和促炎细胞因子在大脑中具有广泛的作用,被认为是产前压力对儿童结果影响的候选机制 。这些化学信使充当影响细胞信号通路的信号(例如,调节酶活性),进而影响神经传递、神经回路的正确形成和维护。

      与之前使用 ACE 框架的文献相反,我们没有观察到我们三组之间的梯度反应。一种可能性是,我们的逆境评分是使用基于人群的指标(例如,SES 或出生体重)计算的,而不是典型的关注儿童虐待的 ACE 问卷。我们的逆境评分不包括任何虐待类别。因此,关于忽视/贫困和发展支持的文献,这些文献也高度预测儿童发展结果 ,可能与我们的研究更相关。此外,Keding 等人表明,身体忽视与普遍的加速成熟有关,尽管女孩遭受虐待与情绪回路的延迟成熟有关。虽然我们观察到低逆境组和高逆境组之间的最大差异,但我们没有观察到无逆境组和低逆境组之间的任何差异。当我们将无逆境组和低逆境组合并时,我们获得了相同的结果——相对于低逆境组,高逆境组在 4.5 岁到 6 岁之间加速下降(补充部分 6)。

      我们的探索性分析结果表明,产前逆境评分与内化和外化行为之间的正相关仅在 4.5 岁时 SC-FC 较高时才观察到。后续分析表明,DAN (背侧注意网络)在调节 ELA 对外化和内化行为的影响中发挥作用。Herzberg 等人也展示了早期生活压力后的环路特异性适应——DAN 内的功能连接在以前被收容的青年和对照组之间存在差异,并且与内化和外化症状呈正相关 。DAN 对于压力暴露后的恢复过程也很重要,这是一个潜在的机制,通过它会影响以后的生活行为。我们还发现了与儿童报告的关系攻击测量和基于任务的情绪调节测量的正全皮层和网络特异性调节作用(补充部分 5)。在未来的研究中,探索与不同精神病理学维度相关的网络特异性 SC-FC (结构连接-功能连接耦合)可能是值得的。

研究局限性

      在解释研究结果时应考虑一些局限性。首先,由于我们的研究人群主要是典型的发育队列,因此高逆境组的样本量相对于低/无逆境组而言较小。这可能会增加过度拟合曲线的风险,并限制了我们按性别进一步分层人群的能力,即使性别是我们分析中的重要协变量(补充部分 3a)。我们的研究结果还表明,逆境与行为问题之间的关联在不同程度的 SC-FC 下是不同的,但可能无法检测到中介效应。其次,头部运动始终是神经影像学研究的可能混杂因素,收集高质量的神经影像数据,尤其是在 7 岁以下的儿科人群中,尤其具有挑战性。我们在预处理过程中校正了运动,并根据运动标准进行了敏感性分析,主要发现保持不变。此外,使用了相对较短的 rs-fMRI 序列(~5.32 分钟)来减轻年轻参与者的负担。然而,~5½ 分钟的采集时间已被证明可以产生儿童稳定的功能连接估计,以及我们研究中稳定的 SC-FC 估计(补充部分 4c)。第三,我们的研究缺乏 4.5 岁之前的影像数据;因此,我们无法确定 4.5 岁之前的 SC-FC 发育轨迹,只能解释 4.5 岁到 7.5 岁之间的 SC-FC 变化。由于我们的数据集是半纵向的,因此我们的轨迹估计是在组级别而不是个体级别。第四,我们关注的是逆境的产前暴露,但结果可能与产后逆境相关。因此,我们的研究结果不一定能说明影响的时间。最后,我们的研究数据代表了新加坡人群,需要在其他队列中进行复制以评估我们研究结果的普遍性。

结论

      我们提供的证据表明,在暴露于 ELA(早年逆境) 后,加速的神经发育发生在具有长期发展的区域。这种观察可能是一种适应性反应,以适应导致可塑性相关学习窗口缩短的次优环境。我们的研究结果表明,6 岁之前的时期至关重要,它们强调了早期发现和干预对于改善 ELA 对以后生活结果的影响的重要性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值