突显网络在认知和情感缺陷中的作用

 对认知和情感失调的研究分析和解释常常借鉴网络范式,特别是由默认模式网络(DMN)、额顶网络(FPN)和突显网络(SN)组成的三网络模型DMN活动主要在认知休息和自我监控过程中占主导地位。FPN在任务参与和认知努力期间达到峰值。同时,SN根据突显性和认知需求,充当DMN和FPN之间的动态"开关"。在认知和情感领域,涉及SN活动的功能障碍与各种临床障碍中的广泛缺陷和不适应行为模式有关,例如抑郁、失眠、自恋型人格障碍、PTSD(SN活跃度过高的情况下),慢性疼痛和焦虑、高度神经质、精神分裂症、癫痫、自闭症和神经退行性疾病、双相情感障碍(SN活跃度过低的情况下)。我们讨论来自各个研究领域的行为和神经学数据,并提出一个综合观点,表明这些情况可能与多个层次上预测编码的广泛中断有关。我们在本文第一部分概述了脑网络范式的基本思想,并将其与传统的模块化方法进行对比。在此之后,我们概述了关键功能脑网络的交互模型,并强调最近将SN(突显网络)相关功能障碍与认知和情感损害联系起来的研究。本文发表在Frontiers in Human Neuroscience杂志。可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,思影提供脑影像数据分析及课程,如感兴趣也可添加微信咨询)。

1. 神经影像学研究的现代范式——从模块化到系统性视角 

      了解大脑丰富的功能如何从其相对固定的解剖结构中产生是神经科学的主要挑战之一。大脑的认知功能可以在许多复杂程度上进行研究,从特定基因及其与行为的相互作用的影响,到分析相互依赖的结构的动态系统创建内在的脑网络。多年来,模块化视角一直主导着认知科学,将特定功能应用于特定结构(Fodor, 1983; Barrett and Satpute, 2013),许多研究常常将所研究的脑区视为独立的功能模块。

      然而,这一范式的缺点已被指出(Fuster, 2000),研究结果,如发现跨模态感觉处理调节(Garner and Keller, 2022; McClure et al., 2022),已开始动摇最基本的假设,如一阶感觉极的单峰性(Cappe and Barone, 2005)。提出的最大问题涉及结构的明显独立性和专门化。基于这一假设的研究通常在更广泛的背景下给出准确但不确定的结果,缺乏一个总体模型使得难以得出统一的结论。前脑岛(AI)的功能就是一个恰当的例子(Wager and Barrett, 2017)。它的活动经常与各种看似无关的过程联系在一起,从感觉和情感处理到高阶认知(Uddin et al., 2017),如身体和情感意识、疼痛(Liu et al., 2021)、自我认知和动机(Craig, 2009)、歌唱和音乐识别(Zamorano et al., 2019)、不确定性、同情心和冒险决策(Singer et al., 2009)、视觉意识(Salomon et al., 2018)、时间感知(Vicario et al., 2020)、注意力持续时间(Nelson et al., 2010)以及内部内感受性和外部感觉信号的整合(Chen et al., 2021),以及内稳态(Flynn, 1999)。

      系统性视角将心理功能描述为领域通用功能脑网络驱动的相互依赖过程的结果,这些网络没有严格的空间边界(Park and Friston, 2013; Uddin et al., 2019; Luo, 2021)。此外,结构和功能网络的解耦是实现人类典型的高级情境敏感整合所必需的(Griffa et al., 2022)。

2. 大脑功能网络

      人脑以分层模块化网络组织的观点现已被广泛接受(Wang et al., 2015)。与独立且功能固定的模块类似于一组专门工具的假设(Gigerenzer and Todd, 1999)相比,功能神经网络被评估为动态的、弹性的和分层的(Gilmore et al., 2018)。这对于应对不断变化的环境因素和发展广泛的情境依赖行为是必要的(Bressler and McIntosh, 2007; Bressler and Menon, 2010)。功能网络之间的转换是对环境变化的反应(Sadaghiani and Kleinschmidt, 2013)。Zerbi et al. (2019)表明,通过释放去甲肾上腺素,功能连接组在应对威胁时发生了快速重构,显著增加了全脑连接,主要在突显网络内。

      功能神经网络源于广泛分散的脑区之间时间上有组织的活动耦合。它们的特点是其框架内脑结构的功能相互依赖性(Bressler and Menon, 2010)。功能网络受神经连接的解剖结构的限制(Xie et al., 2021)。功能网络的拓扑结构取决于个体发展(Shanmugan et al., 2022)。此外,功能连接(FC)可用于预测流体智力甚至人格因素(NEO-FFI; Li et al., 2022)等行为特征。FC是探索健康大脑组织以及精神障碍和个体差异的强大工具。

      Uddin et al. (2019)确定了六个普遍的宏观尺度脑网络。基于许多研究的汇聚证据,三个网络:默认模式网络(DMN)、额顶网络(FPN)和突显网络(SN),通常被称为标准网络(Ciric et al., 2017; Uddin et al., 2022),因为它们的相互作用在几乎所有认知功能中发挥作用(见图1)。这些网络的功能组织异常和动态跨网络对话可能是"精神病理学的三网络模型"中广泛的精神症状的基础(Menon, 2018; Menon et al., 2022)。

图片

图1. 三个标准网络。

      DMN是在人类受试者中首次确定的大规模网络,后来在迄今为止研究的所有哺乳动物物种中都发现了(Garin et al., 2022)。其中心节点包括后扣带回(PCC)、楔前叶和腹内侧前额叶皮层(VMPFC; Bressler and Menon, 2010)。DMN通常被称为任务负性网络,其特点是在PET和fMRI研究中需要认知努力的任务期间,其核心节点出现稳定且可重复的失活(例如,Raichle et al., 2001)。尽管如此,一些节点在整个认知过程中都是活跃的,这意味着DMN在认知中发挥着更复杂和动态的作用(Weber et al., 2022)。研究表明,DMN在需要自传记忆、前瞻性思维、自我/他人空间参考以及理解他人意图的任务中是活跃的(Buckner et al., 2008; Spreng et al., 2009)。此外,DMN对高级社会认知过程至关重要,调节认知同理心反应的个体差异(Oliveira-Silva et al., 2023)。

      FPN(额顶网络)活动与DMN显著负相关(Uddin and Menon, 2009),其激活在认知努力期间相对最强。其功能主要与任务选择和执行功能有关,利用来自其他脑网络的输入主动处理信息,并支持高阶认知功能,如注意力控制和工作记忆。FPN在基于规则的问题解决中,对目标导向行为的决策也是必不可少的(Lindquist and Barrett, 2012)。它连接外侧后顶叶皮层(PPC)和背外侧前额叶皮层(DLPFC; Seeley et al., 2007)。

      SN(突显网络)包括AI(前脑岛)和背外侧前扣带回(dACC; Sridharan et al., 2008)它以独特的细胞成分而著称,即AI/dACC中的von Economo神经元(Banovac et al., 2021),其特点是体积大的梭形体。SN充当在DMN介导的自我和内心世界的专注与FPN维持的与任务相关和指向外部刺激的注意力之间的动态开关。此外,杏仁核和其他SN皮层下节点在响应各种实验任务时共同激活,表明在识别内稳态最相关的竞争性内部和外部刺激方面发挥更多领域通用作用(Chong et al., 2017; Seeley, 2019)。研究表明,其功能与奖赏、动机、情绪和疼痛的处理有关(Menon, 2015)。

      将注意力资源分配给最突出的刺激需要自上而下的敏感性控制和自下而上的刺激过滤机制(Parr and Friston, 2017)。SN(突显网络)的核心作用由前脑岛充当,作为执行控制的守门人。得益于广泛的连接指纹,其后部整合来自个体内部的信号与外部刺激。然后,前脑岛的前部和后部的相互作用调节自主反应,并产生发送到前扣带回(ACC)的信号,有选择地增强需要进一步皮层分析的突出刺激。右前脑岛皮层(rFIC)被认为是一个独特的脑区,充当影响FPN和DMN的枢纽(Uddin, 2015)。DMN和FPN之间的强负相关与执行功能的更高效率有关(Posner et al., 2016;见图2)。

图片

图2. 三个标准网络的基本交互模型。

3. 网络功能障碍。网络实质性对功能障碍的影响

      正确的SN(突显网络)反应决定了行为的适当性,AI在整个网络的正常功能中起关键作用。这一结构内的障碍与许多认知-情感功能障碍相关——包括与精神障碍和神经退行性疾病相关的功能障碍。

3.1. 与突显网络过度活跃相关的缺陷

      AI(前脑岛)-dACC(背外侧前扣带皮层)通路的过度活跃主要与情感障碍(高焦虑)和神经质有关(Massullo et al., 2020)。研究结果表明,对面部情绪表情的反应中AI活动升高(Paulus and Stein, 2006),特别是在焦虑程度高的个体中(Stein et al., 2007)。Paulus et al. (2003)发现AI与问卷测量(神经质和风险规避)以及在赌博游戏中做出冒险决策的行为测量相关。这一结构的较高激活是冒险决策的特征,并预测下一次选择中选择安全选项的可能性。这表明,神经质水平较高的人可能将相对安全的情况解释为具有威胁性(Feinstein et al., 2006)。这表明,神经质水平较高的人可能会将相对安全的情况解释为具有威胁性(Feinstein et al., 2006)。Hamilton等人(2013)在一篇综述文章中提出了一些研究结果,表明抑郁个体在应对负性刺激时,突显网络(SN)的关键结构(前脑岛(AI)和前扣带回皮层(ACC))以及杏仁核表现出活跃。他们还观察到,失眠者在试图入睡时前脑岛活动增加(Chen et al., 2014),自恋型个体的右前脑岛活动也增加(Fan et al., 2011)。

      此外,静息态研究也有助于我们理解SN功能和功能障碍。Seeley et al. (2007)注意到,报告的测试前焦虑水平与AI(前脑岛)和dACC(背外侧前扣带皮层)之间功能连接强度的测量值呈正相关。另一方面,Markett et al. (2013)表明,Cloninger的气质性伤害规避量表与AI和ACC以及AI和DLPFC(背外侧前额叶皮层)之间连接强度相关。在被诊断为惊恐性焦虑的患者中,已报告背侧ACC和新皮层区域之间存在更强的功能连接(Pannekoek et al., 2013)。

      值得注意的是,SN(突显网络)过度活跃不仅与心理脆弱性有关,而且与身体脆弱性有关。例如,在慢性疼痛患者中,前脑岛和ACC等区域的灰质体积特征性地较高(Borsook et al., 2013; Cauda et al., 2014),主观感知的疼痛水平与AI和ACC激活强度相关(Legrain et al., 2011)。

       以上所有结果似乎都与SN模型一致,表明AI过度激活导致过度敏感和焦虑唤醒,可能是许多疾病中的共同跨诊断特征。这可能与构成SN(特别是右AI)的结构的兴奋性阈值低以及将过多刺激分类为重要有关。这导致在非威胁情况下过度概括和过度动员应激反应(Menon and Uddin, 2010; Hermans et al., 2014)。另一方面,在自恋的情况下,提出的SN功能障碍模型依赖于失调的右AI(前脑岛)无法关闭DMN,导致思想过度集中在自我上(Jankowiak-Siuda and Zajkowski, 2013)。

      功能性磁共振数据表明,根据不同的FC模式,前脑岛内至少可以识别出三个亚区:背侧前部(dAI)参与高级认知控制过程(由需要注意力和将信息重定向到DLPFC-PPC环路的任务激活),腹侧前部(vAI)参与情感过程(负责情感刺激向边缘皮层和内侧前额叶皮层内的专门区域的流动),以及参与感觉运动加工的后脑岛(PI)(Deen et al., 2011; Chang et al., 2013)。腹侧通路连接较强的受试者表现出更强烈的情感感受,而背侧通路连接较强的受试者在需要注意力过程活动的认知任务中表现得更快、更有效。

     三网络模型(TNM)中脑网络活动和连接的改变可能是创伤后应激障碍(PTSD)的基础(Lebois et al., 2022)。有人提出,过度活跃和过度连接的SN破坏了内在连接较弱和活动不足的DMN和FPN。根据这一模型,网络中的交替,例如,后SN与PI(后脑岛)的连接增加可能导致对刺激和潜在威胁的敏感性增加,从而导致PTSD患者的回避和高度警觉。AI的过度激活与再次经历创伤性记忆有关(Nicholson et al., 2020)。

      具有低感知突显阈值的突显网络(SN)无法有效调节默认模式网络(DMN)和额顶网络(FPN)的转换(Weng et al., 2019)。创伤后应激障碍(PTSD)中突显加工的认知控制受损可能反映在前脑岛与前扣带回皮层(ACC)和辅助运动区的功能连接降低上(Lee et al., 2022)。FPN和DMN之间的互连和活动减弱,导致FPN中认知狭窄和自上而下调节SN的能力缺失,以及DMN中的解离和恐惧泛化。

      正如Fenster et al. (2018)所示,前脑岛(AI)参与度低与PTSD中的人格解体和情感脱离症状有关。然而,Akiki et al. (2017)提出DMN内的改变也可能是自我参照信息加工受损的基础。此外,DMN与前额叶FPN(额顶网络)区域的过度连接可能限制了FPN参与其他认知需求任务的能力,从而导致PTSD组中认知效能降低的症状。Charquero-Ballester et al. (2022)证实了SN活动与PTSD症状严重程度之间的正相关,并表明成功的PTSD认知治疗可以使大脑网络动态恢复正常。三网络模型为理解PTSD的潜在神经机制提供了宝贵的视角,但它不太可能解释所有PTSD异常。

     

3.2. 与突显网络表现不佳相关的缺陷

     前脑岛(AI)对额顶网络(FPN)和默认模式网络(DMN)的因果影响力降低与认知和情感缺陷有关。迄今为止,记录最完善的相关疾病包括精神分裂症、自闭症和双相情感障碍。

     精神分裂症的特征是思维和感知受损,以及浅薄、适应不良的情感,可以认为是执行控制的缺陷。如Limongi et al. (2020)所示,关键SN节点的兴奋-抑制平衡受到谷氨酸神经传递的病理生理学的影响。已证明SN与DMN(Buckner et al., 2009; Orliac et al., 2013)、SN与FPN(Moran et al., 2013)以及SN内部(AI与dACC之间)(White et al., 2010)之间的FC降低。在精神分裂症患者中进行的结构MRI研究发现,包含所有三个网络的灰质体积较小(Palaniyappan et al., 2011; Krishnadas et al., 2014)。最近对精神分裂症个体的研究发现,前脑岛FC普遍下降,前脑岛亚区之间连接模式的差异性降低,这与临床症状的可变性相关(Tian et al., 2019)。

    Orliac等人(2013)注意到左纹状体连接(属于突显网络SN)与幻觉和抑郁水平之间存在中等程度的负相关。研究者将其解释为可能证实了Kapur(2003)提出的精神分裂症"相关性功能障碍"(差异性突显)假说。该假说认为,皮层-丘脑-顶叶环路的功能异常连接导致多巴胺能神经元的混乱放电,破坏了在SN中进行的刺激相关性选择(Menon et al., 2022; Pugliese et al., 2022)。另一方面,Palaniyappan等人(2013)强调了SN和FPN之间的紊乱。格兰杰因果分析表明,SN对FPN活动的影响显著降低,表现为在认知努力期间无法强烈激活执行结构并"静音"DMN。

      预测编码(PC)理论和贝叶斯推理为脑功能提供了一个全面的原则,有可能将各种观察水平联系到一个更统一的精神分裂症模型中(例如,Adams et al., 2022或Limongi et al., 2018)。PC(预测编码)定义了一个生物学方案,其中大脑可以被视为一个计算器官,产生预测以推断感觉信号的可能原因,可以与实际感觉样本进行比较(Friston, 2010)。自下而上的感觉证据(来自感觉环境的信息)上升到大脑的层次结构,其中大脑的较低水平接收来自大脑较高水平的预测信号,这些信号编码先验信念。预测的准确性经过循环测试——当传入的感觉输入违反预测时,就会产生预测误差(PE),并向前发送以更新更高级别的期望(贝叶斯信念更新;Friston, 2019)。代理根据对预测或PE(预测误差)的信心水平来权衡新证据和先验知识,这决定了对信念更新的影响。在这个框架中,前脑岛皮层被视为低级感觉PE(预测误差)与内感期望的整合器,调节情绪和情感突显性(Barrett and Simmons, 2015)。

      此外,SN在先验信念的双向循环中起着至关重要的作用,以执行任务刺激的功能整合和激活(Limongi et al., 2020)。Royer et al. (2020)研究显示,前脑岛微观结构梯度转换伴随着局部关联的变化:从颗粒状后部,经腹部,上至无颗粒状背侧前部亚区。梯度的转变与FC从主要感觉运动(单峰)到调节和关联(跨峰)网络的转变相对应,类似于其他负责感知、控制和高级认知功能的皮层下系统的层次组织。因此,前脑岛皮层(和整个SN)的多维细胞构筑非常适合计算和传输上升感觉PE(预测误差)的准确性。功能连接层次梯度被认为是PC(预测编码)和异位调节(预测性调节身体的能量资源)的大规模神经结构,这对生物体的各个方面都至关重要(Katsumi et al., 2022)。

      许多研究(例如,Schmack et al., 2015; Kirihara et al., 2020)中有据可查的认知决策缺陷支持精神分裂症中大脑推理系统发生改变的观点。推理失败可以解释广泛的精神病性症状和特征(Friston et al., 2016)。神经递质改变是PC(预测编码)层次机制中不精确的基础,特别是皮质NMDA受体和GABAergic神经元的突触后增益,伴有多巴胺能神经调节的升高。受干扰的神经PE信号引起刺激突显性的错误归因。前脑岛参与监测预测的中断,与其在加工突显刺激和在精神分裂症中将行为突显性分配给非目标刺激的神经病理学相一致(Sridharan et al., 2008)。

      此外,Luo et al. (2020)表明,来自rAI(右侧前脑岛)的控制信号不恰当地升高并指向FPN和DMN,破坏了精神分裂症患者大脑资源的情境一致性分配。Liddle et al. (2016)使用磁脑图(MEG)测量前脑岛在突显性调节任务中的β振荡,以比较任务相关和任务无关刺激加工期间的活动。选择β振荡是因为它们介导内源性长程整合信号或对反复出现的环境刺激的先验期望。与健康对照组相比,精神分裂症患者在处理无关刺激而非相关刺激时,前脑岛的β同步化更多(对预测中断的反应更强;Fries, 2015)。

      实证研究还将精神分裂症症状与PE(预测误差)异常信号(特别是在奖赏、基于价值的决策的大脑区域)、内部建模和先验的长期稳定性缺乏联系起来(Sterzer et al., 2019)。PC(预测编码)的DCM(动态因果模型)研究进一步证明了精神分裂症的神经病理学和病理生理学中异常连接(Fogelson et al., 2014)。长期以来对即将到来的感觉输入的不可预测性最终导致刺激回避和精神运动迟滞,这在临床情况下可以观察到(Corlett et al., 2016)。总之,精神分裂症的症状与高级精度的降低或感觉衰减的失败(高估了PEs的可信度)一致,导致错误推理和认知控制失败,以及可能出现幻觉和妄想(Sterzer et al., 2018)。

       自闭症谱系障碍(ASD)属于一组发育障碍,其特征是社交互动和行为模式的质的异常,以及兴趣和活动的有限和重复的范围(ICD-10)。fMRI研究的荟萃分析发现,与对照组相比,自闭症患者在社交任务中,AI(前脑岛)和ACC(前扣带皮层)的活动通常较少(Di Martino et al., 2009)。Uddin和Menon(2009)关于自闭症功能障碍的模型认为,该障碍是由感觉和边缘结构与前脑岛之间通信的缺陷引起的。这导致SN"低估"社会刺激的重要性,解释了应对社会刺激的特征性功能障碍的表型。此外,dFIC(前脑岛皮层)、DMN和FPN之间的FC模式变化与ASD症状的严重程度相关(Uddin et al., 2015)。Gonzalez-Gadea et al. (2015)使用PC(预测编码)框架暗示,由于期望僵化,ASD患者在面临不确定性时可能会降低精度调整(Van de Cruys et al., 2014)。抑制自下而上输入的倾向和对预期刺激的注意偏差可能会阻碍在动态现实环境中调整精度的能力。这一结果与之前关于ASD预测编码的研究(Lawson et al., 2014)一致,表明自闭症患者难以根据自己既有的信念对感觉输入进行情境化,这些缺陷主要表现在不确定性的情况下(Gomot and Wicker, 2012)。

      双相情感障碍(BD)患者的rs-fMRI和有效连接分析的荟萃分析表明,三个核心脑网络(SN、DMN和FPN)内部和之间的功能整合异常(Sha et al., 2019; Yoon et al., 2021; Zhang et al., 2022)。连接模式的改变取决于情绪和BD的类型(Zhang et al., 2022)。BD患者显示出网络内部(FPN、SN)和网络之间(DMN-SN、DMN-FPN)的连接改变。不同阶段之间也有差异:与抑郁阶段相比,情绪稳定阶段的BD患者表现出FPN之间的过度连接,以及SN与FPN和SN与DMN之间连接的减少(Zhang et al., 2022)。Martino和Magioncalda(2022)以及Magioncalda和Martino(2022)认为,SN、DMN和FPN之间整合的缺乏可能是由于神经递质信号的变化,这可以在BD的躁狂和抑郁阶段观察到。

4. 讨论、局限性和进一步研究的方向

      本文将SN功能障碍分为亢进和低下,这可能会导致对所描述缺陷机制的简单化认识。然而,应该注意的是,SN(突显网络)在所呈现的障碍中的实际作用更加难以捉摸。首先,SN功能障碍是一系列缺陷的共同特征,但这并不意味着它们是唯一或甚至是主要原因。其次,SN结构本身之间和内部的关系是复杂和多样的,这是功能障碍本身不同的原因之一。第三,SN内部非典型连接或激活不足以成为认知-情感功能障碍发生的充分条件。

      从未来研究的角度来看,第二点似乎最有趣,它涉及探索区分各种障碍潜在机制的更复杂的相互作用和条件依赖性。已经尝试具体说明这些机制,例如简要描述的自闭症(Uddin和Menon, 2009)、自恋(Jankowiak-Siuda和Zajkowski, 2013)或精神分裂症(Kapur, 2003; Palaniyappan和Liddle, 2012)的神经功能障碍模型。然而,大多数模型尚未得到足够的经验证据的支持,无法完全验证它们提出的所有假设;目前,它们主要用于指导进一步的研究。

      还必须考虑到,来自成像研究的功能连接数据空间和时间分辨率有限,限制了对足够大的脑区和足够慢的动力学过程的推断。将这些发现与捕获毫秒级动力学的方法(如单电极或多电极阵列;Spira和Hai, 2013)结合起来,可能会带来新的见解,更全面地理解控制网络动力学的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值