Nature Neuroscience:精神障碍中脑异常在区域、回路和网络层次上的异质性

个体异质性是精神疾病患者的显著特征,但常常被经典的病例-对照研究所忽略,这类研究依赖于群体平均比较。在此,我们对1,294名诊断为六种疾病之一(注意缺陷/多动障碍、自闭症谱系障碍、双相情感障碍、抑郁症、强迫症和精神分裂症)的患者和1,465名匹配的对照进行了一项全面的、多尺度的灰质体积(GMV)差异异质性特征描述。规范模型表明,个体相对于群体预期的区域GMV偏差高度异质,同一诊断类别中仅有不到7%的患者受相同区域的影响。然而,这些偏差嵌入在高达56%病例的共同功能回路和网络中。突显-腹侧注意系统在跨诊断中起作用,其他系统则选择性地参与抑郁症、双相情感障碍、精神分裂症和注意缺陷/多动障碍。因此,同一诊断类别的病例之间的表型差异可能源于特定区域偏差的异质性定位,而表型相似性则可能归因于共同功能回路和网络的功能失调。本文发表在Nature Neuroscience杂志

正文

      精神疾病的神经生物学机制仍然难以捉摸。数千项神经影像学研究记录了与特定精神病诊断相关的各种大脑变化,元分析确定了每种疾病最一致受影响的大脑区域,揭示了特定诊断和跨诊断的效应。然而,尽管进行了大量研究,病理生理过程仍然理解不足,且缺乏临床有用的生物标志物。

      这种进展受限的原因之一可能是对病例-对照设计的持续依赖,这种设计比较群体平均值,忽视了相同诊断个体通常表现出的显著临床异质性。实际上,最近的磁共振成像(MRI)研究表明,个体特定的大脑偏差模式显示,群体平均差异并不代表个体情况。这些个体特定的推断通常使用规范建模进行,涉及在给定个体的年龄、性别或其他相关特征下,对大脑表型(如灰质体积,GMV)建立规范预期。模型预测可用于定义一个规范变异范围,以便与新个体进行比较。将模型应用于多个大脑区域的数据,可生成个性化偏差图,量化每个人相对于群体规范的偏离程度,从而识别在个体中与异常小或大的表型值相关的区域,称为极端偏差。对注意缺陷/多动障碍(ADHD)、双相情感障碍(BP)、精神分裂症(SCZ)和自闭症谱系障碍(ASD)等多种MRI衍生表型的规范建模研究发现,虽然病例通常比对照组(HCs;定义为没有任何临床诊断)表现出更多极端偏差,但同一诊断个体间这些偏差的具体位置差异很大。

      这种个体大脑偏差的极端区域异质性与特定精神病诊断常伴随的临床异质性一致,但提出了一个重要问题:如果病例在GMV偏差的解剖位置上几乎没有重叠,那么相同诊断标签下的个体之间的表型相似性又如何解释呢?合理的假设是,这些相似性是由个体间某种共同的神经功能障碍驱动的,但规范建模研究的发现并不支持这一点。

       另一种可能的解释是,这些区域异质性偏差聚集在共同的回路或神经系统内。大脑是一个连通的网络,病理过程往往影响分布的、互联的系统,这意味着不同位置的偏差可能影响共同、连通区域的功能。这一原理在研究共享共同运动、知觉或认知综合征的神经病患者的病灶网络映射研究中得到了证明。这类患者在病灶解剖位置上通常没有重叠,但病灶位置常与共同区域功能耦合。因此,这些综合征的临床表现更多与与损伤区域耦合的部位功能障碍相关,而不是损伤区域本身的功能障碍。

      在本文中,我们考虑了类似的过程是否也存在于精神障碍中,研究了精神障碍中解剖上异质性的区域大脑偏差是否与共同区域和网络功能耦合。我们开发了一个新的框架,将GMV的规范模型与病灶网络映射元素相结合,绘制区域GMV偏差嵌入的功能回路和扩展网络。我们使用这种方法,对1,294名诊断为六种疾病之一(ADHD、ASD、BP、抑郁症(MDD)、强迫症(OCD)和SCZ)的个体进行了神经异质性的多尺度特征描述。受病灶患者研究的启发,我们检验了每种疾病的解剖上异质性区域GMV偏差是否与共同部位在功能上耦合,或是在功能回路或扩展功能网络内(见图1的示意解释)。我们的跨诊断、多尺度方法使我们能够全面了解每种疾病内的神经异质性,同时揭示疾病间的共同点和差异。

图片

图1:在脑区、功能回路和扩展网络层级表征神经异质性

      一个展示如何在不同尺度上表征神经异质性的示意图。节点代表不同的脑区,边代表节点之间的功能耦合(FC),彩色区域对应于大脑的不同功能网络。在区域层级(左),偏离规范模型预测的偏差定位于每个个体的特定脑区。红色节点显示了两个不同个体中映射的这种偏差的位置。回路层级分析(中)揭示与偏差位置功能耦合的区域。在本研究中,我们定义功能回路为与特定偏差区域显示显著FC的一组区域(橙色)。在这个例子中,尽管两个偏差区域位于不同的区域,它们耦合到一个共同的区域(黑箭头)。这些回路可以嵌入包括可能与偏差区域没有直接耦合,但仍然参与同一功能系统的区域的扩展网络中(黄色)。

结果 

样本特征

      我们分析了来自14个不同研究和25个不同扫描点的1,465名健康对照(HCs)(54.47%为男性)和1,294名病例的数据。临床样本包括202名自闭症谱系障碍(ASD)患者(100%为男性)、153名注意缺陷多动障碍(ADHD)患者(41.18%为男性)、228名双相情感障碍(BP)患者(47.37%为男性)、161名抑郁症(MDD)患者(34.16%为男性)、167名强迫症(OCD)患者(50.30%为男性)和383名精神分裂症(SCZ)患者(62.14%为男性)。各扫描点的扫描仪详情、样本大小和人口学特征,在基于数据质量和其他标准排除后(见方法部分)都在补充表1中列出(年龄分布见补充图1)。

规范建模 

      我们使用一个已建立的流程来获取每个参与者的体素级灰质体积(GMV)估计值(方法部分),并将其汇总到1,032个脑区的区域估计中(1,000个皮层区域和32个皮下区域;图2a)。然后,我们基于分层贝叶斯回归(HBR)训练了一个规范模型,在每个区域中分别进行拟合,训练集包含1,196名健康对照(HCtrain)(55.02%为男性;图2a),以建立给定个体的年龄、性别和扫描点的规范GMV范围(图2b;模型拟合统计和扫描点效应见补充图3和补充表2)。HCtrain涵盖了病例的年龄范围,使我们能够对年龄在18到64岁之间的人进行预测(补充图2)。其余的269名对照(52.04%为男性;年龄范围18–62岁)作为测试集(HCtest)被保留下来,用于建立与各临床组比较的规范基准(图2c)。对于临床组和HCtest中的每个个体,我们通过偏差z分数(称为偏差z图;方法部分和图2d)量化区域GMV估计值与规范模型预测的偏离程度,极端偏差定义为z > |2.6|(图2e),相当于P < 0.005,未经校正,参考以往研究10(关于阈值设定的讨论见方法部分)。

图片

图2:每种疾病中极端负GMV偏差的区域异质性。 

a–f,区域层级异质性的特征化工作流程。每个个体的GMV图被分割成1,000个皮层区域和32个皮下区域(a)。使用训练数据集HCtrain训练规范模型,以预测给定个体的区域GMV值(考虑其年龄、性别和扫描点)(b)。然后,将保留的对照组(HCtest)和病例的预测值与实际GMV估计值进行比较。一个区域的模型预测,显示了训练集(HCtrain;浅蓝色)、保留的对照组(HCtest;深蓝色)和临床组(红色)中的个体。实线和虚线分别表示第99百分位和第95百分位(c)。对于每个个体,偏离模型预测的程度被量化为偏差z图(d)。然后将该偏差图以z > |2.6|为阈值,识别出极端偏差(e)。对于HCtest和每个临床组,我们量化了在给定脑区显示极端偏差的个体比例,从而生成极端偏差重叠图(f)。我们从每个临床组的重叠图中减去HCtest的重叠图,得到每个临床组的重叠差异图(Δ重叠图),然后评估这种差异的大小(详细信息见扩展数据图3a–d)(g)。皮层和皮下表面渲染显示出病例组与对照组相比在极端负GMV偏差上显著更大重叠的区域,使用基于组的置换测试识别(粉色对应未校正P < 0.05,红色对应PFDR < 0.05;双尾,病例组 > 对照组)(h)。用于生成该图的数据可以在补充数据1(Regional_neg_thr26)中找到。

      补充表3显示,在所有组别中,超过75%的参与者显示至少一次极端负偏差。与对照组相比,MDD、SCZ、BP和OCD的参与者中这种情况的比例高出约5-12%。超过65%的参与者显示至少一次极端正偏差,ADHD、ASD、BP和OCD的参与者中这种情况的比例高出约4-10%。与HCtest相比,BP、MDD、OCD和SCZ的患者表现出更高的极端负偏差负担,定义为每个人中识别出的极端偏差总数(P = 0.003;扩展数据图1和补充表3)。只有ASD患者显示出比对照组更高的极端正偏差负担(P < 0.001;扩展数据图1和补充表3)。扫描质量(定义见方法部分)与极端偏差负担无相关性(HCtest:ρ = 0.04,P = 0.51;病例:ρ = 0.03,P = 0.34)。在接下来的部分中,我们首先关注负GMV偏差的特征化(即GMV值低于规范预期),然后再考虑正GMV偏差。

脑区层面的异质性

       我们量化了GMV偏差在脑区层面的异质性(图1,左),即显示极端偏差的个体在每个分区脑区中的比例,分别估计每个诊断组和HCtest队列(图2f)。尽管在每组中大多数人显示至少一次偏差,但在任何1,032个脑区中的最大重叠百分比从未超过7%(ADHD:3.27%;ASD:4.95%;BP:5.26%;MDD:6.21%;OCD:4.19%;SCZ:4.96%;HC:2.97%)。因此,个体的极端偏差是常见的,但很少在同一诊断组的个体中出现在一致的位置(扩展数据图2)。

       接下来,我们通过在每个脑区中减去相应的对照组的重叠百分比值,比较了每个临床组与对照组的空间重叠情况(图2g)。在各区域中观察到的Δ重叠值的统计显著性是通过打乱组标签生成的经验零分布来评估的(方法部分和扩展数据图3a–d)。虽然每种疾病在未经校正的水平上显示出孤立的重叠区域,但只有ASD(32个区域)和BP(45个区域)在假发现率(FDR)校正后显示出差异(PFDR < 0.05,双尾;图2h)。这些差异分散在整个皮层,很少聚集成空间结构化的集群。很少有区域显示对照组与病例相比具有显著更大的重叠(补充图4)。使用一种避免依赖单一阈值定义极端偏差的方法重复分析30,得到了类似的结果(方法部分和补充图5–7)。总的来说,这些结果扩展了过去的报道10,13,14,表明在精神疾病中,个体特异性极端GMV偏差位置的最小空间重叠是一个普遍特征。

功能回路层面的异质性 

     接下来,我们探讨每个临床组中识别出的区域异质性极端偏差是否与常见的远端区域显示出显著的功能耦合(FC),从而在不同功能回路层面上显示出更大的个体间一致性(图1,中)。为此,我们对每个参与者显示极端偏差的区域(图3a)进行处理,并在150名无关健康对照(HCP150)的独立样本中映射其全脑FC模式,以建立偏离区域的规范FC模式(图3b)。我们对每个偏离相关的FC图进行了阈值处理(PFWE < 0.025)并二值化(图3c),并取这些阈值图在给定个体的所有极端偏差中的并集(图3d;关于阈值问题的讨论,见讨论部分),生成一个表示在该个体中至少与一个极端偏差显示显著FC的所有区域的图。接下来,我们估计每个组中每个区域与极端偏差显示显著FC的个体比例(图3e)。该分析表明,在与偏离位置功能耦合的脑区中观察到的重叠在绝对值上远高于极端偏差位置本身的重叠(扩展数据图4)。例如,在所有区域中观察到的最大回路级重叠在HCtest中为33%,在临床组中则介于39%(ADHD)和53%(SCZ)之间。

图片

图3 | 每种疾病中极端负GMV偏差的功能回路异质性 

      a–f, 回路层级异质性的特征化工作流程。对于HCtest和每个临床组中的每个参与者,我们取每个显示极端偏差的脑区(a)。对于独立样本的每个对照个体(HC150),我们从每个偏差区域提取一个代表性时间过程,并使用种子相关的FC分析映射其功能耦合的区域。这里展示了临床组中的三名参与者(病例:P1,P2,P3)和对照组中的三名参与者(HCtest:C1,C2,C3)。描绘了P3中两个不同偏差位置的两个FC图和C3中一个偏差位置的一个FC图(b)。我们对与给定极端偏差相关的每个FC图进行了阈值处理和二值化(c)。注意,没有皮下区域在这个阈值处理过程中幸存。我们取所有偏差FC图的阈值图的并集,以获得一个显示与给定个体的一个或多个偏差区域直接FC的所有区域的单一图(d)。对于HCtest和每个临床组,我们量化了在给定区域显示显著FC的个体比例,生成了极端偏差FC重叠图(e)。我们从每个临床组的FC重叠图中减去HCtest的FC重叠图,以获得每个临床组的FC Δ重叠图。通过两种经验零模型评估回路层级重叠的组间差异(详细信息见扩展数据图3)(f)。g,h, 使用基于组的(g)或空间置换测试(h)识别出与极端偏差功能耦合的区域中病例组相比对照组具有显著更大重叠的皮层表面渲染(粉色对应未校正P < 0.05,红色对应PFDR < 0.05,双尾,病例组 > 对照组)。用于生成此图的数据可以在补充数据1(Circuit_neg_parc50)中找到。

      在一定程度上,可以预期FC联合图(图3d,e)的重叠高于区域偏差图(图2e,f),因为任何单个偏差区域都可以与多个其他区域显示FC,从而增加跨个体共同区域被牵连的可能性。出于这个原因,每个临床组的区域回路层级重叠图必须与HCtest重叠图对比,后者提供了FC联合值预期重叠水平的规范基准(图3f)。在这些对比中,一个关键考虑因素是总偏差负担的影响,这在组间是不同的(例如,扩展数据图1)。例如,诊断为SCZ的个体中识别出的极端偏差总数为4,951,而HCtest中只有1,410。

      这一差异意味着SCZ个体的FC联合图中将使用更多的偏差相关FC图,从而增加观察到更高重叠的机会。一方面,这种更高的回路层级重叠将具有真实的表型后果,因为更高的偏差负担是精神障碍的内在和预期特征,这些偏差可能会影响回路层级的功能和行为。另一方面,确定重叠是仅由组间偏差负担差异驱动的,还是反映了该障碍对特定回路的优先靶向,这也很有启发意义。因此,我们使用两种不同的置换测试评估了回路层级重叠的区域组间差异的统计显著性,以解析这些效应(详细信息见方法部分和扩展数据图3)。第一种基于组的置换测试,通过打乱个体特异性FC联合图的组标签(扩展数据图3a–d),评估总体回路层级重叠的差异,而不考虑组间总偏差负担的差异,从而表征组间的“自然”差异。第二种空间置换测试,根据保持每个个体贡献的偏差相关FC图数量的零分布评估组间差异,从而匹配每组总偏差负担的差异(方法部分和扩展数据图3e–k)。该分析测试回路层级重叠的观察组间差异是否大于从相同数量的随机选定种子生成的FC图预期的差异,这些随机种子从具有与经验偏差图相同的基础空间自相关性的偏差图中选出(进一步的详细信息和解释见方法部分)。简而言之,基于组的置换测试识别出重叠的自然发生组间差异,而不考虑偏差负担,而空间置换测试识别出超出总体偏差负担变异的重叠差异,暗示特定功能回路的优先靶向。

      使用基于组的置换测试,我们观察到与对照组相比,SCZ和MDD患者在广泛的皮层区域中有显著更大的重叠(PFDR < 0.05,双尾)(图3g)。在SCZ中,重叠显著更大的区域分布广泛,包括约75%的皮层区域。在MDD中,约31%的区域受影响,主要集中在视觉、顶叶、体感运动、额叶和岛叶皮层区域。类似的空间模式在ASD、OCD和BP中也观察到,但较少的区域在未经校正的结果中显示出这种模式,且很少有区域在FDR校正后幸存。与病例相比,对照组中显示出更大偏差相关FC重叠的区域非常少(补充图8a)。一种将FC结果映射到分区区域的替代方法得到了类似的发现(方法部分和补充图9、10a和11a)。

      扩展数据图5确认,在我们识别出病例组相比对照组具有更大回路层级重叠的几乎所有区域中(图3g),差异的幅度超过了在区域层级观察到的重叠差异。这一结果与我们的主要发现一致,表明参与者之间的重叠程度在回路层级高于区域层级,支持GMV偏差在除ADHD外的所有精神疾病中都是常见功能回路的一部分,尽管它们位于解剖学上异质的区域。

       接下来,我们使用空间置换测试来确定上述回路层级重叠差异在多大程度上归因于偏差负担。结果表明,在未经校正的阈值下,所有疾病在左下额回和中额回区域均显示出更大的重叠证据(图3h)。然而,只有BP中的三个区域和MDD中的一个区域通过了FDR校正。在考虑对照组中显示更大重叠的区域时,很少有结果通过FDR校正(补充图8b),并且另一种将FC结果映射到区域分区的方法得出了类似的发现(方法部分和补充图10b和11b)。因此,尽管这些发现提供了初步证据,表明涉及外侧前额叶皮层(PFC)的神经回路在每种疾病中有优先参与,但解释病例组在回路层级重叠更大的主要因素是总偏差负担。换句话说,病例组在回路层级显示出更大的重叠,主要是因为他们更有可能表现出极端GMV偏差,这反过来增加了功能耦合到偏差区域的部位被牵连的概率。

扩展功能网络层级的异质性 

      迄今为止的分析表明,区域GMV偏差的位置显示出明显的个体异质性,病例组在考虑这些偏差位置的功能回路时显示出显著更大的重叠,并且这种重叠主要由总偏差负担驱动。然而,我们的回路层级分析仅关注与偏差区域显示显著FC的区域,而这些回路通常构成更大、扩展的功能网络的一部分,这些网络可能无法通过回路层级的特征化完全映射(图1,右)。因此,我们根据将脑区划分为七个皮层网络或三个皮下区域的广泛使用和验证的分类,检查了个体特异性GMV偏差与规范功能网络的关系,以得出GMV异质性的全面、多尺度特征化(图4a–c)。这样,如果一个个体在至少一个隶属于给定网络的区域显示出极端偏差,则整个网络被认为是偏差的(图4c)。再次,我们量化了每组中在每个网络中显示偏差的个体比例(图4d),并比较了HCtest和每个临床组之间的这些比例(图4e)。然后,我们使用基于组的和空间置换测试评估网络层级重叠的组间差异,正如在回路层级分析中所做的那样(扩展数据图3)。

图片

图4:每种疾病中极端负GMV偏差的功能网络异质性。a–d,网络层级GMV异质性的特征化工作流程。对于HCtest和每个临床组中的每个个体(a),我们将每个显示极端偏差的脑区分配到七个规范皮层功能网络之一或三个皮下核团(b),这样如果某个网络包含至少一个具有极端偏差的区域,则整个网络被认为是偏差的。皮层表面的渲染显示了由此产生的网络层级极端偏差图(c)。我们量化了每组中在每个网络中显示偏差的个体比例,并将这些比例与HCtest中的网络重叠进行比较(d)。e,网络层级重叠的组间差异是根据两个经验零模型评估的(详细信息见扩展数据图3)。f,g,每个临床组与HCtest队列之间极端负GMV偏差的重叠百分比差异的网络层级−log10 P值,分别在基于组的(f)或空间置换(g)测试下计算。** 表示PFDR <0.05,双尾,病例组 > 对照组,* 表示Puncorrected <0.05,双尾,病例组 > 对照组。实线黑线表示−log10 P = 1.6(P = 0.05,双尾,未经校正)。VIS,视觉;SM,体感运动;DA,背侧注意;SAL/VA,突显/腹侧注意;L,边缘系统;F,额顶;DM,默认模式;MeTe,内侧颞叶;Tha,丘脑;Bas,基底神经节)。用于生成此图的数据可以在补充数据1(Network_neg_10network)中找到。

      这些分析结果如图4d–f所示(每个组在每个网络中的空间重叠度(%)摘要见补充表4)。使用基于组的置换测试,与对照组相比,SCZ和MDD患者在多个网络中显示出显著更大的重叠(PFDR < 0.05,双尾;图4f)。对于SCZ个体,差异包括除了丘脑和基底神经节之外的所有网络。在MDD中,所有皮层网络都受到影响。ADHD涉及背侧注意网络和内侧颞叶,OCD涉及腹侧注意网络。对于ASD和BP,没有网络通过多重比较校正。在未经校正的水平上,突显/腹侧注意网络在所有疾病中都有所涉及,除了ASD。没有网络在对照组中显示出更大的重叠(补充图12a)。

      使用空间置换测试并进行FDR校正后,只有在SCZ中突显性/腹侧注意网络显示了更大的重叠,而在ADHD中内侧颞叶和背侧注意网络显示了更大的重叠(图4g)。没有偏差相关网络在对照组中显示出更大的重叠(补充图12b)。

      我们使用20网络分区(17个皮层网络和3个皮下核团)重复了相同的分析。这些分析结果如补充图13所示(另见补充表5)。总体而言,这些发现与使用10网络分区的结果一致,表明SCZ和MDD在大多数网络中与负GMV偏差的更大网络重叠相关,而其他疾病中的效应则更为局限。使用20网络分区,我们发现了ADHD和MDD中分别对颞顶和控制网络的优先参与的有力证据。

      综合来看,这些结果与回路层级分析一致,表明SCZ和MDD在负GMV偏差的网络层级重叠中具有更大的重叠。ADHD、ASD、BP和OCD中的重叠组间差异更为局限,尽管突显/腹侧注意网络在大多数疾病中都有所涉及。这些效应主要由总偏差负担驱动,只有SCZ和ADHD分别显示了支持突显/腹侧注意和背侧注意/内侧颞叶系统优先参与的有力证据。

正GMV偏差的分析 

      为了完整性,我们对极端正GMV偏差(表示体积高于规范预期的区域)重复了上述相同的分析。在区域层级,极端偏差重叠从未超过6%(ADHD: 5.23%;ASD: 3.96%;BP: 4.82%;MDD: 5.59%;OCD: 4.19%;SCZ: 5.22%;HCtest: 2.60%),很少有区域显示出显著的病例-对照重叠差异(扩展数据图6和7及补充图14)。

      回路层级的重叠更高,所有区域和疾病的最大值达到40%(扩展数据图8)。基于组的置换测试显示,与对照组相比,诊断为ASD的个体在大约20%的区域中具有显著更大的回路层级重叠,主要在视觉、顶叶和额叶皮层中。没有其他差异通过FDR校正(扩展数据图9a和补充图15a)。同样,空间置换测试只在前扣带回和右侧外侧PFC的孤立区域中识别出MDD具有显著更大的重叠(扩展数据图9b和补充图15b)。

在网络层级,组间重叠最高达48%(补充表5),基于组的置换测试识别出SCZ中基底神经节和ASD中除默认模式网络外的所有皮层网络有显著更大的重叠(P < 0.05,双尾),与对照组相比(扩展数据图10a)。只有前者差异在空间置换测试中也观察到,并且伴随着突显/腹侧注意网络的更大重叠(扩展数据图10b)。在对照组中,内侧颞叶相比SCZ显示出显著更大的重叠(补充图16)。

      总之,在基于组的置换测试中,ASD表现出特别显著的回路和网络层级的重叠增加,涉及回路层级中的内侧和外侧顶叶、颞叶和PFC区域,以及网络层级中的所有皮层系统(默认模式网络除外)。这些差异在空间置换测试中并不明显,表明它们主要由ASD个体的正GMV负担增加所驱动。其他疾病中正GMV偏差的回路和网络层级重叠差异不太明显。

讨论

     我们结合了病灶网络映射技术 (lesion network mapping)  和规范性模型 (normative modeling)以刻画不同精神疾病患者在区域、回路和网络水平上的脑偏差个体异质性。我们发现,区域灰质体积 (GMV) 偏差的个体间异质性是精神疾病的一个普遍特征,但这些区域异质性位点通常嵌入共同的功能回路和网络中。因此,区域异质性为精神疾病中观察到的临床异质性提供了一个合理的解释 ,而回路和网络水平的偏差聚集则是同一诊断个体之间表型相似性的一个假定神经基础。通过使用不同的零模型,我们发现,在回路和网络水平上观察到的大部分重叠增加可归因于总偏差负担。这一结果对一些主流模型提出了挑战,这些模型假设特定疾病是由疾病过程选择性地针对特定神经系统功能障碍引起的

患者特异性偏差在区域上是异质的

       与对照组相比,很少有区域在病例中表现出显著更大的区域重叠,并且在所调查的 1,032 个区域中,没有任何疾病的任何单个区域在超过 7% 的病例中表现出极端偏差。这种显著的区域异质性与过去对精神分裂症、注意力缺陷多动障碍 (ADHD) 和双相情感障碍 (BP) 的 GMV 进行的规范性模型研究一致,证实了这种异质性是精神疾病的一个普遍特征。个体间不同区域的可变参与可能导致不同的临床特征,并导致具有相同诊断的人出现表型异质性。未来工作的一个重要方向将是精确地描述 GMV 偏差与症状表达的个体差异之间的关系。

       更广泛地说,观察到的高度区域异质性表明,组均值比较并不能代表任何个体病例中明显的 GMV 偏差的特定特征。因此,均值比较可能无法完整地解释病理生理机制,除非考虑到任何已识别组差异的更广泛的网络背景。值得注意的是,大多数参与者表现出较低的偏差负担(补充表 3)。这一结果是意料之中的,因为迄今为止,精神神经影像学未能识别出可靠的疾病诊断生物标志物,这表明任何与疾病相关的脑部变化都可能是微妙而复杂的。因此,我们应该谨慎对待我们识别精神疾病的强神经生物学特征的能力。

偏差聚集在共同的回路和网络中

     尽管在区域水平上存在相当大的异质性,但偏差通常与共同的功能回路和网络相耦合。在某些情况下,超过 50% 的相同诊断患者表现出至少一个系统的偏差,基于组的排列测试表明,所有疾病都表现出比对照组更大的回路水平重叠的证据。回路和网络水平上更高的重叠与神经系统疾病的病灶网络映射研究相似,这表明许多临床表型并非由病灶区域本身的功能障碍引起,而是由其对远程功能耦合区域的影响引起 。我们的研究结果表明,类似的过程可能发生在精神疾病中,解剖学上分布的 GMV 偏差通常在相似的回路和网络中耦合。这些共同回路和网络的功能障碍可能导致具有相同诊断标签的人出现临床相似性,尽管偏差本身的位置存在极大的异质性。多种机制可以解释这些回路和网络水平的影响,从对分布式回路/网络功能的短暂性失语症样效应,到由异常的区域间信号传导或营养因子轴突运输中断引起的更长时间的跨神经元功能障碍。

      额叶、顶叶、岛叶和颞叶皮层的区域在大多数情况下表现出更大的回路水平重叠,并且跨疾病差异更多的是程度上的差异,而不是种类上的差异。例如,回路水平重叠的差异在 ADHD 中在空间上是局限的,但在精神分裂症中几乎涵盖了整个大脑(图 3g)。这些发现挑战了传统的观点,即不同的精神疾病与特定回路的功能障碍有关(例如,参考文献 32),并表明每种疾病都与影响不同神经系统的复杂变化有关 ,这些变化通常是跨诊断的。因此,我们的网络水平分析显示,在我们考虑的六种疾病中,有五种在突显/腹侧注意网络中存在更大的重叠(图 4f)突显/腹侧注意网络在认知控制、内感受意识和内部和外部注意力的切换中起着核心作用。其功能障碍与多种精神疾病有关,与青少年的一般精神病理学水平升高有关,并在基于体素的形态测量 (VBM) 研究和功能神经影像学研究的经典病例对照荟萃分析中显示出跨疾病异常。我们的研究结果支持了过去的研究,表明突显/腹侧注意网络功能障碍可能在不同诊断的常见一般精神病理过程的表达中起着关键作用。

神经系统的通用和优先靶向

       我们的空间排列测试使我们能够评估回路和网络水平的重叠在多大程度上可以用组间总偏差负担的差异来解释。在回路水平上,前额叶区域被确定为在所有临床组中,在未校正的水平上,与对照组相比表现出更大的重叠,这与每种情况下前额叶功能障碍的大量证据一致。然而,只有重度抑郁症 (MDD) 中的右侧外侧前额叶皮层和双相情感障碍中的左侧外侧前额叶皮层区域通过了错误发现率 (FDR) 校正。右侧前额叶皮层在 MDD 病例中表现出 21% 的重叠,而左侧前额叶皮层在 BP 中表现出 14-15% 的重叠。大量文献表明,外侧前额叶皮层功能障碍与情感障碍有关 ,背外侧前额叶皮层是 MDD和 BP中一个受欢迎的脑刺激目标。病灶网络映射也表明,该区域是解释中风后抑郁症出现的一个核心部位。鉴于我们的空间排列测试没有发现 MDD 和 BP 中存在更大的网络水平重叠的任何证据,因此我们的研究结果表明,与这些特定前额叶区域耦合的功能回路具有很强的特异性。空间排列测试还显示,精神分裂症在突显/腹侧注意网络中,ADHD 在背侧注意网络和内侧颞叶区域中存在更大的网络水平重叠,这表明 GMV 偏差以疾病特异性方式优先针对这些系统。

      神经系统疾病的病灶网络映射表明,症状表达通常是由与病灶相连的远程部位的功能障碍引起的,这意味着这些远程部位代表了可行的治疗靶点。根据这一逻辑,我们空间排列分析的结果表明:可行的治疗靶点可能位于 MDD 的右侧前额叶皮层、BP 的左侧前额叶皮层、精神分裂症的突显/腹侧注意网络,以及 ADHD 的背侧注意网络和内侧颞叶网络。然而,这些靶点可能只与一部分患者相关,观察到的重叠在不同疾病中介于 10% 到 50% 之间。因此,目前试图为每种诊断确定一个共同治疗靶点的最新方法只会取得有限的成功。更全面地了解患者特异性脑部变化及其网络背景,对于开发更有效、更个性化的干预措施至关重要。

       在大多数其他情况下,我们未能拒绝空间零假设。这一结果表明,在基于组的排列下观察到的回路/网络重叠的许多病例对照差异不能归因于偏差在特定回路/网络中的优先积累,因为这些差异与每组中相同数量的随机选择种子的比较结果一致。结合我们基于组的排列分析,我们的研究结果表明,累积的偏差更有可能与前额叶、颞叶、顶叶和岛叶皮层的区域相耦合,仅仅是因为这些区域是大脑中已知的连接枢纽,并且与其他区域功能耦合的可能性更高。虽然这种回路和网络水平的积累仍然会产生真正的表型后果,但空间排列测试使我们能够将潜在的随机过程识别为一个候选生成机制。这一发现挑战了许多研究中的隐含假设,即在疾病中观察到的任何脑部变化都是由有针对性的病理生理过程引起的。进一步研究遗传和环境因素对个体特异性偏差的影响,将有助于阐明驱动其解剖分布的机制。

正偏差的异质性

      正GMV偏差的位置比负偏差更具异质性,并且在不同人群中显示的重叠较少。例外情况是区域层级的ASD和BP,主要在额叶和顶叶区域显示显著更大的重叠。在回路层级,ASD在视觉、顶叶和额叶皮层中显示出显著更大的重叠,而在网络层级,ASD涉及所有皮层网络,除了默认模式网络。ASD与大脑生长失调和加速有关,特别是在幼儿期的颞叶、顶叶和额叶关联皮层中。这些增加是否持续到成年,并能否解释当前的发现,仍不明确。

      其他疾病中正GMV偏差的回路和网络层级重叠差异不太一致。在MDD中,左前扣带回和右前外侧PFC的回路层级重叠更大,与这些区域在情感调节和认知控制中的已知作用一致。观察到的SCZ患者基底神经节的更大重叠可能归因于抗精神病药物的影响,这些药物可导致该区域的体积扩张。

局限性

      虽然病例组的偏差负担高于对照组,并且大多数人显示至少一个偏差,但相当一部分临床参与者(约50%)显示出相对较低的偏差负担(<3个偏差)。这一结果表明,病例和对照组之间存在相当大的重叠,正如许多其他表型所指出的那样,并且与精神疾病相关的脑变化可能是微妙和复杂的。这种微妙性,加上显著的个体间异质性,可能部分解释了尽管经过数十年的研究,该领域未能识别出精神病学的病理标志物。这一结果还可能反映出MRI衍生的GMV估计在映射病理生理相关脑变化方面的灵敏度有限。其他表型的规范建模,如功能或分子成像获得的表型,可能会揭示组间更强的分离。

       单站点精神病学神经影像研究的样本量通常较小,因此我们汇总了多个站点的数据以生成足够大的跨疾病数据集。因此,数据是用不同的采集、招募和临床评估协议收集的。为了避免引入扫描站点和诊断组之间的依赖关系,这可能会混淆病例-对照比较,我们主要集中在使用与临床数据相同扫描仪获得的对照数据上。尽管我们的模型诊断显示数据拟合良好,但未来的工作可以扩展这里使用的技术,以便它们可以用于在更大样本上训练的规范模型(例如,参考文献65,66),以获得更可靠的偏差估计。

      尽管我们使用了严格的质量控制,并且我们的分层贝叶斯模型适当地解析了与站点相关的方差(补充表2),但跨疾病研究症状特征或其他临床相关变量(如发病年龄、疾病持续时间、药物暴露或疾病严重程度)的相关性超出了我们的范围。实际上,虽然我们的方法对于表征个体间回路和网络层级重叠非常有用,但它们不适合分析行为的个体差异。我们工作的一个有价值的扩展将涉及直接测试回路和网络层级重叠与患者临床相似性之间的关系。实现这一目标需要适当的方法来聚合个体内和个体间的偏差相关回路和网络层级数据,并广泛测量多种症状维度以充分评估临床表型。允许个性化模型的广泛症状采样在这种情况下特别有用。这种数据在单点临床神经影像研究中很少可用。未来的研究可能会致力于开发跨不同疾病使用的统一、跨诊断和多站点临床协议,例如由精神病学的层次分类学提供的信息。还应考虑测量获得的具体年龄,因为病例-对照差异的性质和程度可能会随生命周期变化。这种方法可能有助于基于跨越传统诊断界限的患者特异性偏差图识别生物学亚型的数据驱动策略。

      我们的病例是根据《精神障碍诊断统计手册》(DSM)或《国际疾病分类》(ICD)标准进行诊断的。鉴于DSM和ICD在临床和研究中的广泛应用,我们认为了解这些构建的异质性并深入了解特定诊断病例之间表型相似性和差异的神经相关性是重要的。尽管如此,集中于特定综合征而不是传统诊断,正如病灶网络映射文献所示,可能会在区域偏差、其网络背景和行为之间建立更精确的映射。建立足够大的数据库以进行这种综合征为重点的分析将是未来工作的一个关键挑战。

结论

      我们对六种精神疾病的神经异质性进行的多尺度分析确认了GMV偏差的极端区域异质性是精神疾病的一个普遍特征。此外,我们表明这些偏差常常耦合到共同的功能回路和网络中,提供了相同诊断个体间表型相似性的假定神经基础。前额叶和顶叶回路以及突显/腹侧注意网络在各种疾病中的共同参与可能是跨诊断心理困扰的标志,而其他系统的可变参与解释了不同疾病间的表型差异。更广泛地说,我们的研究结果强调了考虑疾病相关病理生理标志物的网络背景的必要性,并指出疾病的临床表达不仅由主要病理部位驱动,还受这种病理对远程连接系统的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值