不可见混杂因素下的动态因果关系推断

不可见混杂因素下的动态因果关系推断

在复杂的动力系统中识别因果相互作用是至关重要的,但在各个学科中都具有挑战性,包括生物学、生态学和深度学习,特别是在存在许多看不见/不可观察的混杂因素的情况下。在许多实际系统中,系统细节通常是未知的,只有一些观测值或测量变量是可用的。因此,开发一种准确可靠的基于数据的未观察混杂因素的因果检测方法势在必行,这是数据科学和深度学习领域的一个长期悬而未决的问题。

根据测量数据类型的不同,因果关系推断主要有两种方法:针对横截面数据的统计方法和针对时间序列数据的动态方法。统计学角度的因果关系推断主要认为因果关系包含在随机变量的内部作用中,在时间无关的稳态系统或横截面数据的假设下,可以通过统计随机化或干预来获得因果关系。因果推理的代表性统计方法包括Rubin著名的潜在结果模型(POM)、Pearl提出的结构因果模型(SCM),以及许多相关算法,如著名的Peter-Clark (PC)算法、线性非高斯无环模型(LiNGAM)、最优结构识别贪心搜索(GES)、最大最小爬坡贝叶斯网络(MMPC)等。一方面,这些方法主要适用于时间无关数据或干预数据,无法充分利用可广泛获取的时间序列数据的动态信息。另一方面,他们致力于基于已知的有向无环图(DAG)来推断因果关系,这并不适用于许多具有反馈回路的实际系统,并且他们也可能遇到无法区分的马尔可夫等价类。为了克服这些局限性,研究人员从动力学角度提出了许多有效的算法来识别时间序列数据的因果关系,包括格兰杰因果关系(GC)、相互信息预测法、状态空间法、量化信息法、递归图法、收敛交叉法(CCM)、动态因果关系(DC)框架、交叉图评价(CME)、交叉图平滑(CMS)、部分交叉映射(PCM)和基于条件交叉映射的技术等。GC是识别不同变量之间因果关系的著名方法之一,但GC主要适用于线性因果关系。传递熵(Transfer entropy, TE)将GC扩展到基于信息论的非线性情况,但它仍然不能处理非线性动力学的不可分性问题。GC或TE的核心思想是通过预测一个变量与另一个变量的关系来衡量因果关系。而基于重构的技术则起源于延迟嵌入理论,在此基础上发展了状态空间重构技术,并广泛应用于非线性时间序列分析,包括CCM、CME、CMS等。这些方法可以通过从时间序列数据中构造一个变量来成功地研究成对因果关系。然而,当试图检测不可观察变量的因果关系时,挑战就出现了。

通常,在复杂系统中的两个变量之间存在许多混杂因素,也称为共同驱动因素,这可能导致虚假因果关系。这些干扰因素可以分为两类,即可见干扰因素和不可见干扰因素。由可见/可观察混杂因素引起的错误或虚假因果关系可以通过条件因果方法消除,如部分交叉映射(PCM)、条件格兰杰因果关系(cGC)、直接CMC因果关系(DCMC)等。然而,这些方法需要遍历整个系统的所有变量,以准确地排除虚假或虚假的因果关系,导致计算成本高且不稳定。特别是,这些方法只有在所有的混杂因素都是可观察或已知的情况下才有效。在实践中,复杂系统中的许多混杂因素是看不见的和未知的,从而使现有的方法失效或容易导致虚假的因果关系。换句话说,现有的大多数方法都不能准确地检测到不可见混杂因素下的因果关系,更不用说对混杂因素的重建了。因此,通过消除不可见混杂因素对一般系统的影响来准确量化因果关系的问题还没有得到充分的研究,仍然是一个突出的问题。迫切需要开发一种新的方法来检测即使有许多看不见的混杂因素的因果关系,并进一步重建这些看不见的混杂因素。

为了填补这一空白,Yan等人开发了一种方法,即不可见混杂因素下的因果关系(Causality under Invisible Confounders,CIC,图1,https://github.com/JinlingY/CIC),以理论和计算的方式从时间序列数据中检测动态因果关系。该方法旨在仅从观测数据中准确地检测因果关系并进一步重建不可见的混杂因素。其核心思想是将原始变量转化为其嵌入延迟的对应变量,然后将其分别分解为其公共子空间和私有子空间,从而量化变量之间的因果关系。作者们提出了新的正交分解定理,保证了这种分解,使缠绕变量在嵌入空间中可分离,从而解决了不可分性问题。请注意,效果变量在延迟嵌入空间中重建其因果变量,而不是在原始空间中,因果变量预测其效果变量。在计算上,作者们采用深度神经网络来有效地进行这种正交分解,从而即使在存在未观察到的混杂因素的情况下,也能够仅从观察到的时间序列数据中准确检测因果关系。

在这里插入图片描述

图1 不可见混杂因素下的因果关系(CIC)方法框架。A. CIC的基本原理。复杂动力系统包含许多影响变量间因果推理的不可观测变量,这就提出了两个挑战。为了解决这一问题,提出了一种基于正交分解定理的CIC框架,以消除原始空间中被误认为是因果关系的虚假链接。B. 延时嵌入空间。C. CIC框架。D.发现因果关系并重建不可见的混杂因素。蓝色曲线、紫色曲线和绿色曲线分别表示x和y的因果关系、混杂因素和非因果关系。x和y的隐形干扰因子Z可以通过CIC框架进行量化

在这个因果框架中,作者们的正交分解定理为保证动态因果关系提供了理论基础,而深度学习是在计算上实现非线性系统中变量分解和混杂重构的主干。因此,CIC方法为长期存在的错误识别虚假因果影响的问题提供了一种优雅的解决方案,即使存在未观察到的混杂因素。值得注意的是,CIC方法仅使用两个观察到的变量就可以确定因果关系和混杂因素,这是任何其他方法通常无法实现的壮举。与现有的因果推理方法相比,它还具有突出的优势,因为它可以有效地重建未观察到的混杂因素。该方法通过各种基准系统和具有不同因果结构的真实数据集进行了广泛的验证。在各种系统中的应用表明,它是一种强大的工具,可以分析和重建真实的因果网络,仅使用部分观测变量的时间序列数据。

在这项工作中,作者们开发了一种新的方法,CIC,即使在不可见混杂因素的条件下,也能推断动态因果关系。该方法建立在新的理论结果之上,即正交分解定理及其从时间序列数据中实现的VAE(Variational Auto Encoder)框架。理论基础确保了对任何高维系统仅使用两个观察变量(数据)进行因果检测,即使存在许多未观察到的混杂因素,这实际上是该领域长期存在的问题。除了坚实的理论基础,该方法有两个独特的优点:1)仅使用两个观察变量的数据来检测与不可见混杂因素的因果相互作用;2)重建不可见混杂因素。除了看不见的混杂因素问题,CIC还能够处理因果推理中另一个臭名昭著的不可分性问题。

通常,非线性系统中变量的动力学是不可分离的,因为它们相互交织在一起。尽管最近提出的许多方法都试图推断因果关系,如基于预测的方法和基于交叉映射的方法,但当系统中存在大量混杂因素时,它们要么错误地将混杂因素中的常见相互作用识别为因果关系,要么失去准确性。CIC方法的一个优点是,它可以区分变量之间的关系,例如,实际的因果关系或由不可见的混杂因素引起的共同相互作用,仅基于成对变量的观察。这消除了引入其他观察变量(如基于条件的方法)的需要。其核心思想在于延迟嵌入空间中的正交分解定理,从理论上和计算上将原始空间中纠缠变量的不可分动力学转化为嵌入空间中纠缠变量的可分动力学,从而解决因果推理的不可分问题。此外,为了区分直接和间接因果关系,识别可见和不可见的混杂因素,将定理1扩展到涉及多个观察变量的条件版本。此外,在计算上,采用深度神经网络高效地实现正交分解,即使存在未观测到的混杂因素,也能仅从观测到的时间序列数据中可靠地检测出因果关系。该方法还应用于各种基准和现实世界数据集,证明了不仅在低维系统中,而且在高维系统中推断因果关系和不可见混杂因素的能力。明确地推断因果关系和混杂因素是恢复复杂系统因果机制的关键。因此,CIC在这一过程中提供了一个强大的工具,有效地解决了以往有影响的研究中出现的混杂问题。

值得注意的是,仍有几个问题值得进一步调查。首先,CIC框架主要依赖于观测或测量数据的时间信息,因此时间序列的样本量不能太小(例如≥10),以保持算法的性能。其次,识别x和y之间的混杂因素需要训练两个VAE(Variational Auto Encoder)模型:一个是从x到y,另一个是从y到x。研究如何使用这种方法识别混杂因素是值得的。第三,研究主要集中在非干预系统内的动态因果关系。如何仅根据观察到的时间序列推断干预的动态因果关系仍然是未来研究的一个重要而有趣的问题。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值